course Mth 173 Ʌv~w{assignment #001
......!!!!!!!!...................................
12:39:18 `q001. Explain the difference between x - 2 / x + 4 and (x - 2) / (x + 4). The evaluate each expression for x = 2.
......!!!!!!!!...................................
RESPONSE --> The first expression is also written as x-(2/x)+4 whereas the second expression is binomial algebra. At x=2 the first expression evaluates out to be 5 and the second expression evaluates to be 0. confidence assessment: 3
.................................................
......!!!!!!!!...................................
12:40:59 `q002. Explain the difference between 2 ^ x + 4 and 2 ^ (x + 4). Then evaluate each expression for x = 2. Note that a ^ b means to raise a to the b power. This process is called exponentiation, and the ^ symbol is used on most calculators, and in most computer algebra systems, to represent exponentiation.
......!!!!!!!!...................................
RESPONSE --> I correctly solved the question. confidence assessment: 3
.................................................
......!!!!!!!!...................................
12:42:22 2 ^ x + 4 indicates that you are to raise 2 to the x power before adding the 4. 2 ^ (x + 4) indicates that you are to first evaluate x + 4, then raise 2 to this power. If x = 2, then 2 ^ x + 4 = 2 ^ 2 + 4 = 2 * 2 + 4 = 4 + 4 = 8. and 2 ^ (x + 4) = 2 ^ (2 + 4) = 2 ^ 6 = 2*2*2*2*2*2 = 64.
......!!!!!!!!...................................
RESPONSE --> True, if there was a problem before this then I accidentally skipped it. self critique assessment: 3
.................................................
......!!!!!!!!...................................
12:47:53 `q003. What is the numerator of the fraction in the expression x - 3 / [ (2x-5)^2 * 3x + 1 ] - 2 + 7x? What is the denominator? What do you get when you evaluate the expression for x = 2?
......!!!!!!!!...................................
RESPONSE --> numerator=3 and denominator=3x(2x-5)^2+1 for x=2 the expression evaluates to be 95/7 confidence assessment: 3
.................................................
......!!!!!!!!...................................
12:49:43 The numerator is 3. x isn't part of the fraction. / indicates division, which must always precede subtraction. Only the 3 is divided by [ (2x-5)^2 * 3x + 1 ] and only [ (2x-5)^2 * 3x + 1 ] divides 3. If we mean (x - 3) / [ (2x-5)^2 * 3x + 1 ] - 2 + 7x we have to write it that way. The preceding comments show that the denominator is [ (2x-5)^2 * 3x + 1 ] Evaluating the expression for x = 2: - 3 / [ (2 * 2 - 5)^2 * 3(2) + 1 ] - 2 + 7*2 = 2 - 3 / [ (4 - 5)^2 * 6 + 1 ] - 2 + 14 = evaluate in parenthese; do multiplications outside parentheses 2 - 3 / [ (-1)^2 * 6 + 1 ] -2 + 14 = add inside parentheses 2 - 3 / [ 1 * 6 + 1 ] - 2 + 14 = exponentiate in bracketed term; 2 - 3 / 7 - 2 + 14 = evaluate in brackets 13 4/7 or 95/7 or about 13.57 add and subtract in order. The details of the calculation 2 - 3 / 7 - 2 + 14: Since multiplication precedes addition or subtraction the 3/7 must be done first, making 3/7 a fraction. Changing the order of the terms we have 2 - 2 + 14 - 3 / 7 = 14 - 3/7 = 98/7 - 3/7 = 95/7. COMMON STUDENT QUESTION: ok, I dont understand why x isnt part of the fraction? And I dont understand why only the brackets are divided by 3..why not the rest of the equation? INSTRUCTOR RESPONSE: Different situations give us different algebraic expressions; the situation dictates the form of the expression. If the above expression was was written otherwise it would be a completely different expression and most likely give you a different result when you substitute. If we intended the numerator to be x - 3 then the expression would be written (x - 3) / [(2x-5)^2 * 3x + 1 ] - 2 + 7x, with the x - 3 grouped. If we intended the numerator to be the entire expression after the / the expression would be written x - 3 / [(2x-5)^2 * 3x + 1 - 2 + 7x ].
......!!!!!!!!...................................
RESPONSE --> I correctly answered the question. self critique assessment: 3
.................................................
......!!!!!!!!...................................
12:54:21 `q004. Explain, step by step, how you evaluate the expression (x - 5) ^ 2x-1 + 3 / x-2 for x = 4.
......!!!!!!!!...................................
RESPONSE --> (4-5)^(8)-1+(3/4)-2 (-1)^(8)-1+(3/4)-2 1-1+(3/4)-2 -5/4 confidence assessment: 3
.................................................
......!!!!!!!!...................................
12:57:17 We get (4-5)^2 * 4 - 1 + 3 / 1 - 4 = (-1)^2 * 4 - 1 + 3 / 4 - 2 evaluating the term in parentheses = 1 * 4 - 1 + 3 / 4 - 2 exponentiating (2 is the exponent, which is applied to -1 rather than multiplying the 2 by 4 = 4 - 1 + 3/4 - 2 noting that 3/4 is a fraction and adding and subtracting in order we get = 1 3/4 = 7 /4 (Note that we could group the expression as 4 - 1 - 2 + 3/4 = 1 + 3/4 = 1 3/4 = 7/4). COMMON ERROR: (4 - 5) ^ 2*4 - 1 + 3 / 4 - 2 = -1 ^ 2*4 - 1 + 3 / 4-2 = -1 ^ 8 -1 + 3 / 4 - 2. INSTRUCTOR COMMENTS: There are two errors here. In the second step you can't multiply 2 * 4 because you have (-1)^2, which must be done first. Exponentiation precedes multiplication. Also it isn't quite correct to write -1^2*4 at the beginning of the second step. If you were supposed to multiply 2 * 4 the expression would be (-1)^(2 * 4). Note also that the -1 needs to be grouped because the entire expression (-1) is taken to the power. -1^8 would be -1 because you would raise 1 to the power 8 before applying the - sign, which is effectively a multiplication by -1.
......!!!!!!!!...................................
RESPONSE --> The way the expression was written dictated that 2x was to be treated as the exponent not just 2. self critique assessment: 1
.................................................
......!!!!!!!!...................................
12:59:25 *&*& Standard mathematics notation is easier to see. On the other hand it's very important to understand order of operations, and students do get used to this way of doing it. You should of course write everything out in standard notation when you work it on paper. It is likely that you will at some point use a computer algebra system, and when you do you will have to enter expressions through a typewriter, so it is well worth the trouble to get used to this notation. Indicate your understanding of the necessity to understand this notation.
......!!!!!!!!...................................
RESPONSE --> I primarily use a TI-92 calculator and must know and understand both methods of writing expressions. self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:02:25 `q005. At the link http://www.vhcc.edu/dsmith/genInfo/introductory problems/typewriter_notation_examples_with_links.htm (copy this path into the Address box of your Internet browser; alternatively use the path http://vhmthphy.vhcc.edu/ > General Information > Startup and Orientation (either scroll to bottom of page or click on Links to Supplemental Sites) > typewriter notation examples and you will find a page containing a number of additional exercises and/or examples of typewriter notation.Locate this site, click on a few of the links, and describe what you see there.
......!!!!!!!!...................................
RESPONSE --> explanatory text and exercises on typewriter notation. confidence assessment: 3
.................................................
......!!!!!!!!...................................
13:03:01 You should see a brief set of instructions and over 30 numbered examples. If you click on the word Picture you will see the standard-notation format of the expression. The link entitled Examples and Pictures, located in the initial instructions, shows all the examples and pictures without requiring you to click on the links. There is also a file which includes explanations. The instructions include a note indicating that Liberal Arts Mathematics students don't need a deep understanding of the notation, Mth 173-4 and University Physics students need a very good understanding,
......!!!!!!!!...................................
RESPONSE --> True. self critique assessment: 3
.................................................
......!!!!!!!!...................................
13:03:44 while students in other courses should understand the notation and should understand the more basic simplifications. There is also a link to a page with pictures only, to provide the opportunity to translated standard notation into typewriter notation.
......!!!!!!!!...................................
RESPONSE --> True self critique assessment: 3
................................................."
course MTH 173 22:14:43`q001. You will frequently need to describe the graphs you have constructed in this course. This exercise is designed to get you used to some of the terminology we use to describe graphs. Please complete this exercise and email your work to the instructor. Note that you should do these graphs on paper without using a calculator. None of the arithmetic involved here should require a calculator, and you should not require the graphing capabilities of your calculator to answer these questions.
......!!!!!!!!...................................
RESPONSE --> (0,-4) and (-4/3,0) confidence assessment: 3
.................................................
......!!!!!!!!...................................
22:15:11 The graph goes through the x axis when y = 0 and through the y axis when x = 0. The x-intercept is therefore when 0 = 3x - 4, so 4 = 3x and x = 4/3. The y-intercept is when y = 3 * 0 - 4 = -4. Thus the x intercept is at (4/3, 0) and the y intercept is at (0, -4). Your graph should confirm this.
......!!!!!!!!...................................
RESPONSE --> correct self critique assessment: 3
.................................................
......!!!!!!!!...................................
22:15:36 `q002. Does the steepness of the graph in the preceding exercise (of the function y = 3x - 4) change? If so describe how it changes.
......!!!!!!!!...................................
RESPONSE --> no the graph in linear confidence assessment: 3
.................................................
......!!!!!!!!...................................
22:15:46 The graph forms a straight line with no change in steepness.
......!!!!!!!!...................................
RESPONSE --> true self critique assessment: 3
.................................................
......!!!!!!!!...................................
22:16:21 `q003. What is the slope of the graph of the preceding two exercises (the function ia y = 3x - 4;slope is rise / run between two points of the graph)?
......!!!!!!!!...................................
RESPONSE --> m=3 confidence assessment: 3
.................................................
......!!!!!!!!...................................
22:16:30 Between any two points of the graph rise / run = 3. For example, when x = 2 we have y = 3 * 2 - 4 = 2 and when x = 8 we have y = 3 * 8 - 4 = 20. Between these points the rise is 20 - 2 = 18 and the run is 8 - 2 = 6 so the slope is rise / run = 18 / 6 = 3. Note that 3 is the coefficient of x in y = 3x - 4. Note the following for reference in subsequent problems: The graph of this function is a straight line. The graph increases as we move from left to right. We therefore say that the graph is increasing, and that it is increasing at constant rate because the steepness of a straight line doesn't change.
......!!!!!!!!...................................
RESPONSE --> true self critique assessment: 3
.................................................
......!!!!!!!!...................................
22:20:20 `q004. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = 0 and x = 3. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?
......!!!!!!!!...................................
RESPONSE --> the graph is increasing the graph gets steeper as x increases increasing at an increasing rate confidence assessment: 3
.................................................
......!!!!!!!!...................................
22:20:50 Graph points include (0,0), (1,1), (2,4) and (3,9). The y values are 0, 1, 4 and 9, which increase as we move from left to right. The increases between these points are 1, 3 and 5, so the graph not only increases, it increases at an increasing rate STUDENT QUESTION: I understand increasing...im just not sure at what rate...how do you determine increasing at an increasing rate or a constant rate? INSTRUCTOR RESPONSE: Does the y value increase by the same amount, by a greater amount or by a lesser amount every time x increases by 1? In this case the increases get greater and greater. So the graph increases, and at an increasing rate. *&*&.
......!!!!!!!!...................................
RESPONSE --> true self critique assessment: 3
.................................................
......!!!!!!!!...................................
22:22:38 `q005. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = -3 and x = 0. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?
......!!!!!!!!...................................
RESPONSE --> decreasing as the y values are getting smaller at a decreasing rate confidence assessment: 3
.................................................
......!!!!!!!!...................................
22:22:49 From left to right the graph is decreasing (points (-3,9), (-2,4), (-1,1), (0,0) show y values 9, 4, 1, 0 as we move from left to right ). The magnitudes of the changes in x from 9 to 4 to 1 to 0 decrease, so the steepness is decreasing. Thus the graph is decreasing, but more and more slowly. We therefore say that the graph is decreasing at a decreasing rate.
......!!!!!!!!...................................
RESPONSE --> true self critique assessment: 3
.................................................
......!!!!!!!!...................................
22:25:37 `q006. Make a table of y vs. x for y = `sqrt(x). [note: `sqrt(x) means 'the square root of x']. Graph y = `sqrt(x) between x = 0 and x = 3. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?
......!!!!!!!!...................................
RESPONSE --> increasing at a constant rate given this part of the graph is linear. confidence assessment: 3
.................................................
......!!!!!!!!...................................
22:26:32 If you use x values 0, 1, 2, 3, 4 you will obtain graph points (0,0), (1,1), (2,1.414), (3. 1.732), (4,2). The y value changes by less and less for every succeeding x value. Thus the steepness of the graph is decreasing. The graph would be increasing at a decreasing rate. If the graph respresents the profile of a hill, the hill starts out very steep but gets easier and easier to climb. You are still climbing but you go up by less with each step, so the rate of increase is decreasing. If your graph doesn't look like this then you probably are not using a consistent scale for at least one of the axes. If your graph isn't as desribed take another look at your plot and make a note in your response indicating any difficulties.
......!!!!!!!!...................................
RESPONSE --> I understand. self critique assessment: 3
.................................................
......!!!!!!!!...................................
22:29:33 `q007. Make a table of y vs. x for y = 5 * 2^(-x). Graph y = 5 * 2^(-x) between x = 0 and x = 3. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?
......!!!!!!!!...................................
RESPONSE --> decreasing at a decreasing rate as x increases steepness is getting lower as the graph is getting flatter confidence assessment: 3
.................................................
......!!!!!!!!...................................
22:29:57 ** From basic algebra recall that a^(-b) = 1 / (a^b). So, for example: 2^-2 = 1 / (2^2) = 1/4, so 5 * 2^-2 = 5 * 1/4 = 5/4. 5* 2^-3 = 5 * (1 / 2^3) = 5 * 1/8 = 5/8. Etc. The decimal equivalents of the values for x = 0 to x = 3 will be 5, 2.5, 1.25, .625. These values decrease, but by less and less each time. The graph is therefore decreasing at a decreasing rate. **
......!!!!!!!!...................................
RESPONSE --> true self critique assessment: 3
.................................................
......!!!!!!!!...................................
22:30:54 `q008. Suppose you stand still in front of a driveway. A car starts out next to you and moves away from you, traveling faster and faster. If y represents the distance from you to the car and t represents the time in seconds since the car started out, would a graph of y vs. t be increasing or decreasing? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?
......!!!!!!!!...................................
RESPONSE --> increasing at an increasing rate as the car is getting faster and farther away with time confidence assessment: 3
.................................................
......!!!!!!!!...................................
22:31:13 ** The speed of the car increases so it goes further each second. On a graph of distance vs. clock time there would be a greater change in distance with each second, which would cause a greater slope with each subsequent second. The graph would therefore be increasing at an increasing rate. **
......!!!!!!!!...................................
RESPONSE --> true self critique assessment: 3
.................................................
"