bar2859emailvccsedu

#$&*

course Mth 164

03/11 9:57

011. Conic sections

*********************************************

Question: `q001. What is the distance from (3, 5) to (7, 2)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

D = sqrt((x - x)^ + (y - y)^2)

D = sqrt ((7-3)^2 + (2-5)^2)

D = sqrt (4^2 + -3^2)

D = sqrt(16 + 9)

D = sqrt(25)

D = 5

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe distance is the hypotenuse of a right triangle with vertices at the two points, whose legs are parallel to the x and y axes and whose hypotenuse runs from one point to the other.

The legs of the triangle are thus 7 - 3 = 4 and 2 - 5 = -3, and the hypotenuse is sqrt(4^2 + (-3)^2) = sqrt(25) = 5.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q002. What is the distance from (7, 2) to (x, y)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

D = sqrt((x - x)^2 + (y - y)^2)

D = sqrt((x - 7)^2 + (y - 2)^2)

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe distance is the hypotenuse of a right triangle with vertices at the two points, whose legs are parallel to the x and y axes and whose hypotenuse runs from one point to the other.

The legs of the triangle are thus x - 7 and y - 2, and the hypotenuse is sqrt((x-7)^2 + (y-2)^2).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

The legs of the triangle are x-7 and y-2. The hypotenuse is sqrt((x-7)^2 + (y-2)^2)

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `q003. What is the distance from (x1, y1) to (x, y)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The legs of the triangle are (x - x1) and (y - y1). The hypotenuse is sqrt((x - x1) + (y - y1)).

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe distance is the hypotenuse of a right triangle with vertices at the two points, whose legs are parallel to the x and y axes and whose hypotenuse runs from one point to the other.

The legs of the triangle are thus x - x1 and y - y1, and the hypotenuse is sqrt((x-x1)^2 + (y-y1)^2).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q004. What is the distance from (x1, y1) to (x2, y2)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The legs of the triangle are (x2 - x1) and (y2 - y1). The hypotenuse is sqrt((x2 - x1)^2 + (y2 - y1)^2).

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe distance is the hypotenuse of a right triangle with vertices at the two points, whose legs are parallel to the x and y axes and whose hypotenuse runs from one point to the other.

The legs of the triangle are thus x2 - x1 and y2 - y1, and the hypotenuse is sqrt((x2-x1)^2 + (yy-21)^2).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q005. Write as an equation: The distance from (7, 2) to (x, y) is 9.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

9 = sqrt(x-7)^2 + (y - 2)^)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe distance from (7, 2) to (x, y) is sqrt((x-7)^2 + (y-2)^2), so the statement says that sqrt((x-7)^2 + (y-2)^2) = 9. Note that both sides of this equation could be squared to get (x-7)^2 + (y-2)^2 = 81.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Bothe sides can be squared to get rid of the sqrt and make the 9 equal to 81.

------------------------------------------------

Self-critique Rating:3

*********************************************

Question: `q006. Write as a system of two equations: The distance from (7, 2) to (x, y) is 9 and distance from (4, 1) to (x, y) is 10. Solve the system for x and y.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

9 = sqrt(x - 7)^2 + (y - 2)^2)

10 = sqrt(x - 4)^2 + (y - 1)^2)

81 = (x - 7)^2 + (y - 2)^2)

100 = (x - 4)^2 + (y - 1)^2)

x^2 - 14 x + 49 + y^2 - 4 y + 4 = 81

x^2 - 8 x + 16 + y^2 - 2 y + 1 = 100

x^2 - 14 x + y^2 - 4 y = 28

x^2 - 8 x + y^2 - 2 y = 83

-6x - 2 y = -55

-2y = 6x - 55

y = -3x + 55/2

x^2 - 14 x + 49 + (-3x + 55/2)^2 - 4 ( -3x + 55/2 ) + 4 = 81

10·x^2 - 167·x + 701.25 = 83

x = 11.16, 5.54.

y^2 - 2·y + 35.2656 = 83

y = 7.98, -5.98

y^2 - 2·y - 34071/2500 = 83

y = 10.88, -8.88.

(11.16, 7.98), (11.16,-5.98), (5.54, 10.88), and (5.54, -8.88)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe distance from (7, 2) to (x, y) is sqrt((x-7)^2 + (y-2)^2), so the first statement says that sqrt((x-7)^2 + (y-2)^2) = 9.

The distance from (4, 1) to (x, y) is sqrt((x-4)^2 + (1-y)^2), so the second statement says that sqrt((x-4)^2 + (1-y)^2) = 10.{}

If we square both equations we get (x-7)^2 + (y-2)^2 = 81 and (x-4)^2 + (1-y)^2 = 100.

Expanding the squares in these equations we get

x^2 - 14 x + 49 + y^2 - 4 y + 4 = 81 and

x^2 - 8 x + 16 + y^2 - 2 y + 1 = 100.

Collecting terms we have{}

x^2 - 14 x + y^2 - 4 y = 28 and

x^2 - 8 x + y^2 - 2 y = 83.

Subtracting the second equation from the first we get

-6x - 2 y = -55, which we solve for y to get

y = -3x + 55/2.

Substituting this expression into the first equation we get

{}x^2 - 14 x + 49 + (-3x + 55/2)^2 - 4 ( -3x + 55/2 ) + 4 = 81, which we expand to get

10·x^2 - 167·x + 701.25 = 83.

Solving for x (using the quadratic formula) we get two solutions, x = 11.16 and x = 5.54.

Substituting these x values into the second equation we get y^2 - 2·y + 35.2656 = 83, with solution y = 7.98 or y = -5.98; and y^2 - 2·y - 34071/2500 = 83 with solutions y = 10.88 and y = -8.88. This gives us possible solutions (11.16, 7.98), (11.16,-5.98), (5.54, 10.88) and (5.54, -8.88).

{}Checking out these solutions with the first equation we see that (11.16, -5.98) and (5.54, 10.88) are in fact solutions, while (11.16, 7.98) and (5.54, 10.88) are not.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q007. Write as an equation: The distance from (7, 2) to (x, y) is equal to the distance from (4, 1) to (x, y). Simplify this equation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Sqrt((x - 7)^2 + (y - 2)^2)) = Sqrt((x - 1)^2 + (y - 1)^2))

(x-7)^2 + (y-2)^2 = (x-4)^2 + (1-y)^2

x^2 - 14 x + 49 + y^2 - 4 y + 4 = x^2 - 8 x + 16 + y^2 - 2 y + 1

-6x - 2y + 36 = 0

y = -3x + 18

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe distance from (7, 2) to (x, y) is sqrt((x-7)^2 + (y-2)^2), and the distance from (4, 1) to (x, y) is sqrt((x-4)^2 + (1-y)^2). To say that these distances are equal is to say that

sqrt((x-7)^2 + (y-2)^2)= sqrt((x-4)^2 + (1-y)^2)

Squaring both sides we get (x-7)^2 + (y-2)^2 = (x-4)^2 + (1-y)^2.

Expanding the squares we

x^2 - 14 x + 49 + y^2 - 4 y + 4 = x^2 - 8 x + 16 + y^2 - 2 y + 1.

Subtracting x^2 - 8 x + 16 + y^2 - 2 y + 1 from both sides we get

-6x - 2y + 36 = 0.

Solving for y we get

y = -3x + 18.

This is a linear equation, telling us that the set of points (x, y) which are equidistant from (7, 2) and (4, 1) lie along a straight line with slope -3 and y-intercept 18.

Recall from basic geometry that the perpendicular bisector of a line segment through two points is the line which is equidistant from those points. Since the slope of the segment from (7,2) to (4,1) is 1/3, we expect that the perpendicular bisector will have slope - 1 / (1/3) = -3, as is the case for the line we have obtained. It is also easy to verify that the line y = -3x + 18 contains the midpoint between (7, 2) and (4, 1): The midpoint is ( (7+4)/2, (2+1)/2 ) = (11/2, 3/2). Substitution will show that this point lies on the line y = -3x + 18.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q008. Write as an equation: The distance from ((7, 4) to (x, y) is equal to the distance from the line y = 2 to (x, y). Simplify this equation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Sqrt((x - 7)^2 + (y - 4)^2) = y - 2

(x-7)^2 + (y-4)^2 = (y - 2 ) ^ 2

x^2 - 14 x + 49 + y^2 - 8 y + 16 = y^2 - 4 y + 4

x^2 - 14 x + 49 - 4 y + 12 = 0

X^2 - 14x - 4y + 61 = 0

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe distance from (7, 4) to (x, y) is sqrt( (x-7)^2 + (y-4)^2 ). The distance from (x, y) to the line y = 2 lies along the vertical line from (x, y) to y = 2; it is clear from Figure 49 that this distance is | y - 2 |.

Thus we have sqrt( (x-7)^2 + (y-4)^2 ) = y - 2. Squaring both sides we get

(x-7)^2 + (y-4)^2 = (y - 2 ) ^ 2. Expanding the squares we have

x^2 - 14 x + 49 + y^2 - 8 y + 16 = y^2 - 4 y + 4. Subtracting y&2 - 4 y + 4 from both sides we have

x^2 - 14 x + 49 - 4 y + 12 = 0.

You aren't expected to have known the rest of this solution before, but you need to note the following:

Note that this equation is quadratic in x and linear in y. An equation of this form is generally rearranged into the form (y - k) = A * (x - h) ^ 2. In this case we can add 4y - 12 to both sides to get

x^2 - 14 x + 49 = 4 ( y - 3). This simplifies to

(y - 3) = 1/4 ( x - 7)^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Forgot theses steps

x^2 - 14 x + 49 = 4 ( y - 3)

(y - 3) = 1/4 ( x - 7)^2

------------------------------------------------

Self-critique Rating:3