query_10

#$&*

course Mth 164

SOLUTIONS/COMMENTARY ON QUERY 10

Query problem 8.1.28 polar coordinates of (-3, 4`pi)

......!!!!!!!!...................................

10:38:28

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The -3 means we end up to the left 3 units and the 4pi means you have completed 2 circles and are at the angle 0.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** (-3, 4 pi) corresponds to 2 complete revolutions, corresponding to the angle 4 pi, which directs you along the positive x axis.

• However r = -3 indicates that we move 3 units in the opposite direction, so we'll end up 3 units to the left of the origin and on the x axis.

This point could also be described by the polar coordinates (3, pi) or (3, -pi), or (-3, 0). **

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Can be write as (3, pi) or (3, -pi), or (-3, 0).

------------------------------------------------

Self-critique Rating:3

**** Query problem 8.1.42 rect coord of (-3.1, 182 deg)

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(-3.1, 182 deg)

The -3.1 means you will move to the left 3.1 units and the 182 means it makes that angle at the polar axis.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

GOOD STUDENT SOLUTION:

since we know the formula for converting polar coordinates to rectangular

coordinates we can say that r=-3.1 and theta=182 deg. we can first find the

value of x by saying

x=r cos theta which gives

(-3.1) cos 182 deg. = 3.1.

We can then find y by saying y= r sin theta so y=(-3.1)sin 182 deg. using a

calculator we get an approx. value of .1081.

Thus the rectangular coordinates are (3.1, .1081), approx.. (-3.1, 182 deg)

.........................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

To get the y use y = r sin(theta)

Y = -3sinf(182)

Y = 1.081 (-3.1, 182 deg)

------------------------------------------------

Self-critique Rating:3

Query problem 8.1.54 polar coordinates of (-.8, -2.1)

......!!!!!!!!...................................

18:50:13

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

r^2 = x^2 + y^2

r = sqrt( -.8^2 + -2.1^2)

r = 2.24

tan(theta) = -2.1 / -.8

tan(theta) = 2.625

Theta = arctan(2.625)

Theta = 69. 145

180 + 69. 145 = 249.145

(2.24 , 249.145degrees)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT SOLUTION:

For the rectangular coordinates of (-.8, -2.1) to find the polar coordinates:

we know that r^2 = x^2 + y^2

so thus we know r = sqrt( (-.8) ^2 + (-2.1) ^2)

so r = sqrt( .64 + 4.41)

r = sqrt 5.05

r = 2.247.

To find theta we use tan (theta) = y / x

So tan(theta) = (-2.1)/ (-.8)

tan (theta) = 2.625 and x < 0 so

theta = 69.145 deg + 180 deg = 249.145 deg

or about 249 degrees.

Thus the polar coordinate would be as follows,

( 2.2, 249 deg). **

** In radians we have arctan(2.625) = 1.21; adding pi radians because x < 0 we get 4.35 rad.

So the coordinates are (2.2, 4.35), approx.. **

This point is in the third quadrant so the angle would be pi + 1.21 rad, or 69.1 deg + 180 deg.

When the x component is negative the angle is in the second or third quadrant; the range of the arctan is the fourth and first quadarnt so when x is negative you need to add pi rad or 180 deg to arctan(y/x).

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

**** Query problem 8.1.60 write y^2 = 2 x using polar coordinates.

......!!!!!!!!...................................

19:05:48

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y^2 = 2 x

y^2 -2x = 0

confidence rating #$&*:1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** We can rearrange the equation to give the form

y^2 - 2 x = 0. Then since y = r sin (theta) and x = r cos (theta) we have

(r^2 sin ^2 theta) - ( 2 r cos (theta) = 0.

We can factor out r to get

r [r sin^2(theta) - 2 cos(theta) ] = 0,

which is equivalent to

r = 0 or r sin^2(theta) - 2 cos(theta) = 0.

The latter form can be solved for r. We get

r = 2 cos(theta) / sin^2(theta).

This form is convenient for graphing. **

.........................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I don’t understand what step to do after I get the problem set to 0.

------------------------------------------------

Self-critique Rating:2

@&

It isn't necessary to get the = 0 form at the beginining.

Whether you do that or not, you are going to substitute r sin(theta) for y and r cos(theta) for x.

Then you will solve for r.

*@

**** Query problem 8.1.52 exact polar coordinates of (-2, -2`sqrt(3))

......!!!!!!!!...................................

10:58:03

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

R = sqrt(-2^2 + (2sqrt(3))

R = sqrt(4 + 11.99)

R = 3.99

Tan(theta) =2sqrt(3) / 2

Theta = 59.999

180 + 59.999 = 239.99

(3.99 , 239.99)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

r^2=x^2+y^2 so

r^2=(-2)^2+(-2 sqrt(3))^2 = 4+12 = 16 so

so r=4.

tan theta= y/x = (-2 sqrt(3))/(-2) = sqrt(3).

This occurs for the basic angle theta = pi/3, and also for theta = pi/3 + pi = 4 pi/3.

The given point is in the third quadrant, so the angle is 4 pi/3.

The polar coordinates are therefore (4, 4 pi/3).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Would you count my answer right?

------------------------------------------------

Self-critique Rating:

@&

I wouldn't because the question asked for the exact polar coordinates.

Angles should also be specified in radians.

*@

@&

Depending on the context, you might get up to half credit for that answer.

*@

**** Query problem 8.1.62 write 4 x^2 y = 1 using polar coordinates.

......!!!!!!!!...................................

11:05:39

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

4 x^2 y = 1

x=r cos(theta) y= r sin(theta)

4(r cos(theta)^2(r sin theta)=1

4 r^3 cos theta sin theta=1

2r^3(sin 2 theta)=1

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

GOOD STUDENT SOLUTION

we can first say that since x=r cos theta and y= r sin theta that 4(r cos

theta)^2(r sin theta)=1

we then have

4 r^3 cos theta sin theta=1

then using the double angle formula we have

2r^3(sin 2 theta)=1

.........................................

11:05:40

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

**** Query problem 8.1.72 rect coord form of r = 3 / (3 -

cos(`theta))

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

r = 3 / (3 - cos(`theta))

3r - r cos(theta)=3

3sqrt(x^2+y^2)-x=3

3sqrt(x^2+y^2)=3 + x

3(x^2 + y^2) = x^2 + 6 x + 9

2 x^2 + y^2 - 6x - 9 = 0

2( x^2 - 3 x + 9/4 - 9/4 ) + y^2 = 9

2 ( x+3/2)^2 - 9/2 + y^2 = 9

2 ( x + 3/2)^2 + y^2 = 9/2

(x+3/2)^2 / (9/4) + y^2 / (9/2) = 1

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Multiply both sides of the equation by 3-cos(theta) to get

3r - r cos(theta)=3.

Substitute sqrt(x^2+y^2) for r and x for r cos(theta) to get

3sqrt(x^2+y^2)-x=3. Add x to both sides to obtain

3sqrt(x^2+y^2)=3 + x and square both sides:

3(x^2 + y^2) = x^2 + 6 x + 9, which simplifies to

2 x^2 + y^2 - 6x - 9 = 0.

Completing the square on 2 x^2 - 6x we get

2( x^2 - 3 x + 9/4 - 9/4 ) + y^2 = 9 so

2 ( x+3/2)^2 - 9/2 + y^2 = 9 so

2 ( x + 3/2)^2 + y^2 = 9/2 so

(x+3/2)^2 / (9/4) + y^2 / (9/2) = 1.

This is the equation of an ellipse centered at (-3/2, 0) with semi-axes 3/2 in the x direction and 3 sqrt(2) / 2 in the y direction.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

**** Query problem 8.2.10 graph r = 2 sin(`theta).

......!!!!!!!!...................................

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

r = 2 sin(`theta)

r ^2 = 2 r sin (theta)

x ^2 + y ^2 = 2 y

x ^2 + ( y ^2 -2 y ) = 0

x ^ 2 + ( y ^2 - 2 y + 1 - 1 ) = 0

x ^2 + ( y -1 ) ^2 - 1 = 0

x^2 + (y-1)^2 = 1

(0, 1) radius = 1

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** When `theta = 0 or `pi, r = 0 and the graph point coincides with the origin.

If `theta = `pi/2, r = 2. If `theta = `pi/4, r = `sqrt(2). So as `theta increases from 0 to `pi/2, r increases from 0 to 2 and the graph follows an arc (actually the arc of a circle) in the first quadrant from the origin to (2, `pi/2).

As `theta moves from `pi/2 to `pi the graph follows an arc in the second quadrant which leads back to the origin.

As `theta goes from `pi to 3 `pi/2, angles in the third quadrant, r becomes negative since sin(`theta) is negative. At 3 `pi / 2, r will be -2 and the point (-2, 3 `pi / 2) coincides with (2, `pi/2). The graph follows the same arc as before in the first quadrant.

As `theta goes from 3 `pi / 2 to 2 `pi, r will remain negative, which places the graph along the same second-quadrant arc as before.

Thus the graph will consist of a closed arc in the upper half-plane, tangent to the x axis at the origin.

This description doesn’t prove that the graph is a circle, but it turns out to be a circle whose radius is 1. The easiest way to prove this is to convert the equation to rectangular coordinates, as follows:

We can multiply both sides by r to get

r ^2 = 2 r sin (theta).

Substituting x^2 + y^2 for r and y for r sin(theta) we have

x ^2 + y ^2 = 2 y

x ^2 + ( y ^2 -2 y ) = 0

x ^ 2 + ( y ^2 - 2 y + 1 - 1 ) = 0

x ^2 + ( y -1 ) ^2 - 1 = 0

x^2 + (y-1)^2 = 1.

This is the standard form of the equation of a circle with center (0, 1) and radius 1. This is the circle described above. **

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

**** Was it possible to use symmetry in any way to obtain your graph,

and if so how did you use it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes you could use horizontal symmetry. The max and mins happen alternatively at the pi/2 and the negatives.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

......!!!!!!!!...................................

11:54:29

yes the horizontal symmetry caused us to bound the graph at theta=pi/2 so r

has a maximum height of 2. and its minimum horizontal line is drawn at -2

this maximum and minimum happens alternatley at the intervals of pi/2 and

the negatives.

.........................................

11:54:30

......!!!!!!!!...................................

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

**** Query problem 8.2.36 graph r=2+4 cos `theta

......!!!!!!!!...................................

11:58:23

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

r=2+4 cos `theta

when theta goes from 0 to pi/2 and cos goes from 1 to 0 then r goes from 6 to 2.

When theta is equal to pi/3 we have cos(theta) equal to -1/2 so that r is 0. Then as theta goes from pi/2 to pi/3,r goes from 2 to 0.

Between theta = pi/3 and theta = 2 pi / 3 the value of cos(theta) will go from -1/2 to -1 to -1/2, so that r will go from 0 to -2 and back to 0. This will move to the fourth coordinate.

These will make heart shaped figures.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** This graph is symmetric with respect to the pole, since replacing theta by -theta doesn't affect the equation (this is so because cos(-theta) = cos(theta) ).

At theta goes from 0 to pi/2, cos(theta) goes from 1 to 0 so that r will go from 6 to 2.

Then when theta = pi/3 we have cos(theta) = -1/2 so that r = 0. As theta goes from pi/2 to pi/3, then, r goes from 2 to 0. To this point the graph forms half of a heart-shaped figure lying above the x axis.

Between theta = pi/3 and theta = 2 pi / 3 the value of cos(theta) will go from -1/2 to -1 to -1/2, so that r will go from 0 to -2 and back to 0. The corresponding points will move from the origin to the 4th quadrant as theta goes past pi / 3, reaching the point 2 units along the pole when theta = pi then moving into the first quadrant, again reaching the origin when theta = 2 pi/3. These values will form an elongated loop inside the heart-shaped figure.

From theta = 2 pi / 3 thru theta = 3 pi / 2 and on to theta = 2 pi the values of r will go from 0 to 2 then to 6, forming the lower half of the heart-shaped figure. **

.........................................

11:58:24

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Good responses. See my notes and let me know if you have questions. &#