course Phy 202 I found this query very hard. Almost all of the questions seemed foreign to me however, i worked all of the assigned text problems and all of the assigned problem set problems. The questions seemed to be on the university physics level instead of the college physics level (I am in the college level physics course). Again, I did not see any assigned problems that were even close to what I was asked to work out on the query. ìíë‹ðïrûšâöäêùƒlÙ~çêˆ×ʬƒ¿©assignment #003 003. Physics II 06-24-2008
......!!!!!!!!...................................
20:44:27 In your own words explain the meaning of the electric field.
......!!!!!!!!...................................
RESPONSE --> The electric field is the force that is exerted on a positive test charge. The test charge is at a point that is divided by the magnitude of the test charge. confidence assessment: 3
.................................................
......!!!!!!!!...................................
20:45:42 STUDENT RESPONSE AND INSTRUCTOR COMMENT: electric field is the concentration of the electrical force ** That's a pretty good way to put it. Very specifically electric field measures the magnitude and direction of the electrical force, per unit of charge, that would be experienced by a charge placed at a given point. **
......!!!!!!!!...................................
RESPONSE --> OK self critique assessment: 3
.................................................
......!!!!!!!!...................................
20:51:43 Query Principles of Physics and General Physics problem 16.15 charges 6 microC on diagonal corners, -6 microC on other diagonal corners of 1 m square; force on each. What is the magnitude and direction of the force on the positive charge at the lower left-hand corner?
......!!!!!!!!...................................
RESPONSE --> -3.24 x 10^-1 N/C Toward the center of the square. confidence assessment: 2
.................................................
......!!!!!!!!...................................
20:58:00 ** The charges which lie 1 meter apart are unlike and therefore exert attractive forces; these forces are each .324 Newtons. This is calculated using Coulomb's Law: F = 9 * 10^9 N m^2/C^2 * ( 6 * 10^-6 C) * ( 6 * 10^-6 C) / ( 1 m)^2 = 324 * 10^-3 N = .324 N. Charges across a diagonal are like and separated by `sqrt(2) meters = 1.414 meters, approx, and exert repulsive forces of .162 Newtons. This repulsive force is calculated using Coulomb's Law: F = 9 * 10^9 N m^2/C^2 * ( 6 * 10^-6 C) * ( 6* 10^-6 C) / ( 1.414 m)^2 = 162 * 10^-3 N = .162 N. The charge at the lower left-hand corner therefore experiences a force of .324 Newtons to the right, a force of .324 Newtons straight upward and a force of .162 Newtons at 45 deg down and to the left (at angle 225 deg with respect to the standard positive x axis, which we take as directed toward the right). This latter force has components Fy = .162 N sin(225 deg) = -.115 N, approx, and Fx = .162 N cos(225 deg) = -.115 N. The total force in the x direction is therefore -.115 N + .324 N = .21 N, approx; the total force in the y direction is -.115 N + .324 N = .21 N, approx. Thus the net force has magnitude `sqrt( (.21 N)^2 + (.21 N)^2) = .29 N at an angle of tan^-1( .21 N / .21 N) = tan^-1(1) = 45 deg. The magnitude and direction of the force on the negative charge at the lower right-hand corner is obtained by a similar analysis, which would show that this charge experiences forces of .324 N to the left, .324 N straight up, and .162 N down and to the right. The net force is found by standard vector methods to be about .29 N up and to the left. **
......!!!!!!!!...................................
RESPONSE --> I was about to calculate the forces to be .324N but I was not able to determine the correct direction. I'm not clear on whether or not this is the final magnitude. I have copied this problem into a word document and will work to figure out how to find the magnitude and direction. self critique assessment: 2
.................................................
......!!!!!!!!...................................
21:06:22 query university physics 21.68 (22.52 10th edition) 5 nC at the origin, -2 nC at (4 cm, 0). If 6 nC are placed at (4cm, 3cm), what are the components of the resulting force?
......!!!!!!!!...................................
RESPONSE --> h = squrt(4-4^2 + 3-0^2) = 3cm = .03m I'm not sure how to find the components. I was not able to recall or find an example from our problem set or from the textbook problems assigned that shows how to find the components. I am a general college physics student and the question above says that it came from the university physics book. I'm not sure if this has anything to do with why i was not able to find an example. confidence assessment: 0
.................................................
......!!!!!!!!...................................
21:08:14 ** The 5 nC charge lies at distance sqrt( 4^2 + 3^2) cm from the 6 nC charge, which is 3 cm from the charge at (4 cm ,0). The force exerted on the 6 nC charge by the two respective forces have magnitudes .00011 N and .00012 N respectively. The x and y components of the force exerted by the charge at the origin are in the proportions 4/5 and 3/5 to the total charge, giving respective components .000086 N and .000065 N. The force exerted by the charge at (4 cm, 0) is in the negative y direction. So the y component of the resultant are .000065 N - .00012 N = -.000055 N and its x component is .000086 N. **
......!!!!!!!!...................................
RESPONSE --> I will review this problem and work to understand it. self critique assessment: 2
.................................................
......!!!!!!!!...................................
21:09:57 Query univ phy 21.76 (10th edition 22.60) quadrupole (q at (0,a), (0, -a), -2q at origin). For y > a what is the magnitude and direction of the electric field at (0, y)?
......!!!!!!!!...................................
RESPONSE --> I was not able to find any examples from the textbook problems or the problem sets to show how to find the answer to this question. confidence assessment: 0
.................................................
......!!!!!!!!...................................
21:12:45 ** The magnitude of the field due to the charge at a point is k q / r^2. For a point at coordinate y on the y axis, for y > a, we have distances r = y-a, y+a and y. The charges at these distances are respectively q, q and -2q. So the field is k*q/(y - a)^2 + k*q/(y + a)^2 - 2k*q/y^2 = 2*k*q*(y^2 + a^2)/((y + a)^2*(y - a)^2) - 2*k*q/y^2 = 2*k*q* [(y^2 + a^2)* y^2 - (y+a)^2 ( y-a)^2) ] / ( y^2 (y + a)^2*(y - a)^2) = 2*k*q* [y^4 + a^2 y^2 - (y^2 - a^2)^2 ] / ( y^2 (y + a)^2*(y - a)^2) = 2*k*q* [y^4 + a^2 y^2 - y^4 + 2 y^2 a^2 - a^4 ] / ( y^2 (y + a)^2*(y - a)^2) = 2*k*q* [ 3 a^2 y^2 - a^4 ] / ( y^2 (y + a)^2*(y - a)^2) . For large y the denominator is close to y^6 and the a^4 in the numerator is insignifant compared to a^2 y^2 sothe expression becomes 6 k q a^2 / y^4, which is inversely proportional to y^4. **
......!!!!!!!!...................................
RESPONSE --> ok self critique assessment: 2
.................................................
......!!!!!!!!...................................
21:14:25 query univ 22.102 annulus in yz plane inner radius R1 outer R2, charge density `sigma.What is a total electric charge on the annulus?
......!!!!!!!!...................................
RESPONSE --> I am not sure where to even look for help with answering these questions. I worked through all the problem sets and through all of the assigned textbook problems but i did not run across any like the ones asked in this query confidence assessment: 0
.................................................
......!!!!!!!!...................................
21:14:42 ** The total charge on the annulus is the product Q = sigma * A = sigma * (pi R2^2 - pi R1^2). To find the field at distance x along the x axis, due to the charge in the annulus, we first find the field due to a thin ring of charge: The charge in a thin ring of radius r and ring thickness `dr is the product `dQ = 2 pi r `dr * sigma of ring area and area density. From any small segment of this ring the electric field at a point of the x axis would be directed at angle arctan( r / x ) with respect to the x axis. By either formal trigonometry or similar triangles we see that the component parallel to the x axis will be in the proportion x / sqrt(x^2 + r^2) to the magnitude of the field from this small segment. By symmetry only the xcomponent of the field will remain when we sum over the entire ring. So the field due to the ring will be in the same proportion to the expression k `dQ / (x^2 + r^2). Thus the field due to this thin ring will be magnitude of field due to thin ring: k `dQ / (x^2 + r^2) * x / sqrt (x^2 + r^2) = 2 pi k r `dr * x / (x^2 + r^2)^(3/2). Summing over all such thin rings, which run from r = R1 to r = R2, we obtain the integral magnitude of field = integral ( 2 pi k r x /(x^2 + r^2)^(3/2) with respect to r, from R1 to R2). Evaluating the integral we find that magnitude of field = 2* pi k *x* | 1 /sqrt(x^2 + r1^2) - 1 / sqrt(x^2 + r2^2) | The direction of the field is along the x axis. If the point is close to the origin then x is close to 0 and x / sqrt(x^2 + r^2) is approximately equal to x / r, for any r much larger than x. This is because the derivative of x / sqrt(x^2 + r^2) with respect to x is r^2 / (x^2+r^2)^(3/2), which for x = 0 is just 1/r, having no x dependence. So at small displacement `dx from the origin the field strength will just be some constant multiple of `dx. **
......!!!!!!!!...................................
RESPONSE --> ok self critique assessment: 2
.................................................