course Mth 158 xRw{cwassignment #021
......!!!!!!!!...................................
22:26:43 **** query 2.7.8 (was 2.6.6). y inv with sqrt(x), y = 4 when x = 9.
......!!!!!!!!...................................
RESPONSE --> y inv with sqrt(x), y = 4 when x = 9. Inverse variation of y= k / x or.. y = k / sqrt(x) if y ='s 4 when x='s 9 then substituting into the equation you get.. 4 = k / sqrt(9) sqrt (9) is 3 so that.. 4 = k / 3 k = 4 * 3 = 12 y = 12 / sqrt(x)
.................................................
......!!!!!!!!...................................
22:27:17 ** The inverse proportionality to the square root gives us y = k / sqrt(x). y = 4 when x = 9 gives us 4 = k / sqrt(9) or 4 = k / 3 so that k = 4 * 3 = 12. The equation is therefore y = 12 / sqrt(x). **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
22:28:03 ** The proportionality is z = k (x^3 + y^2). If x = 2, y = 3 and z = 1 we have 1 = k ( 2^3 + 3^2) or 17 k = 1 so that k = 1/17. The proportionality is therefore z = (x^3 + y^2) / 17. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
22:33:21 query 2.7.20 (was 2.6.20). Period varies directly with sqrt(length), const 2 pi / sqrt(32)
......!!!!!!!!...................................
RESPONSE --> Varies directly.. y=kx T varies directly with the square root of its length l (in feet) so that.. T = k sqrt(L) where k = 2 pi / sqrt(32). putting it into the formula we have.. T = 2 pi / sqrt(32) * sqrt(L)
.................................................
......!!!!!!!!...................................
22:34:01 ** The equation is T = k sqrt(L), with k = 2 pi / sqrt(32). So we have T = 2 pi / sqrt(32) * sqrt(L). **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
22:42:47 query 2.7.34 (was 2.6.30). Resistance dir with lgth inversely with sq of diam. 432 ft, 4 mm diam has res 1.24 ohms. **** What is the length of a wire with resistance 1.44 ohms and diameter 3 mm? Give the details of your solution.
......!!!!!!!!...................................
RESPONSE --> Resistance dir with lgth inversely with sq of diam... R = k * L / D^2 1.24 = k * 432 / 4^2 k = 1.24 * 4^2 / 432 = .046 approx R = .046 * L / D^2 R = 1.44 d = 3 looking for L.. L = R * D^2 / (.046) L = 1.44 * 3^2 / .046 = 280 approx. making the wire around 280 feet
.................................................
......!!!!!!!!...................................
22:43:06 ** We have R = k * L / D^2. Substituting we obtain 1.24 = k * 432 / 4^2 so that k = 1.24 * 4^2 / 432 = .046 approx. Thus R = .046 * L / D^2. Now if R = 1.44 and d = 3 we find L as follows: First solve the equation for L to get L = R * D^2 / (.046). Then substitute to get L = 1.44 * 3^2 / .046 = 280 approx. The wire should be about 280 ft long. **
......!!!!!!!!...................................
RESPONSE --> ok
................................................."