Query 15

#$&*

course Mth 279

April 30 around 3:50pm.

Query 15 Differential Equations*********************************************

Question: Suppose y1 and y2 are solutions to y '' + 2 t y ' + t^2 y = 0. If y1(3) = 0, y1 ' (3) = 0, y2(3) = 1 and y2 ' (3) = 2, can you say whether {y1, y2} is a fundamental set? If so, is it or isn't it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y1(3) = 0

y1 ' (3) = 0

y2(3) = 1

y2 ' (3) = 2

y '' + 2 t y ' + t^2 y = 0

I think I need to use these equations:

y(t0) = c1y1(t0) + c2y2(t0)

y’(t0) = c1y1’(t0) + c2y2’(t0)

OR the Wronskian to identify:

y1(t0)y2’(t0) - y2(t0)y1’(t0) doesn’t = 0

Plug in given sets:

0(2) - 1(0) = 0

W(t) = 0, therefore {y1,y2} is NOT a fundamental set.

Is this right?! I feel like I’m doing something wrong.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

@& You can find the Wronskian at t = 3:

W(3) = det [ 0, 1; 0, 2 ] = 0.

The equation is defined for all values of t.

If the Wronskian is zero for one value of t in an interval of definition, then it's zero for all values of t in that interval.

The interval of definition is the entire real axis, so the Wronskian is zero everywhere. So these functions cannot form a fundamental set.*@

*********************************************

Question: Are y1 = 2 e^(-2 t) cos(t) and y2 = e^(-2 t) sin(t) solutions to the equation

y '' + 4 y ' + 5 y = 0?

What are the initial conditions at t = 0?

Is {y1, y2} a fundamental set?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y1 = 2 e^(-2 t) cos(t)

y2 = e^(-2 t) sin(t)

Need to find y1’ and y2’:

Y1’ = (-4 cos(t)-2 sin (t)) * e^(-2t)

Y2’ = (cos(t) - 2 sin(t)) * e^(-2t)

y '' + 4 y ' + 5 y = 0 (main equation)

I think I need to use these equations:

y(t0) = c1y1(t0) + c2y2(t0)

y’(t0) = c1y1’(t0) + c2y2’(t0)

OR the Wronskian to identify:

y1(t0)y2’(t0) - y2(t0)y1’(t0) doesn’t = 0 (if it doesn’t equal 0, then {y1,y2} IS a fundamental set)

Plug in given sets:

= [2 e^(-2 t) cos(t)]*[ (cos(t) - 2 sin(t)) * e^(-2t)] - [e^(-2 t) sin(t)]*[ (-4 cos(t)-2 sin (t)) * e^(-2t)]

= [2 cos (t) * (cos (t) - 2 sin (t)) * e^(-4t)] - [-2 sin (t) * (2 cos (t) + sin (t)) * e^(-4t)]

=2e^(-4t)

If t = 0, then

= 2

So, since it’s 2 and not 0, does this mean that it IS a fundamental set?!

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

@& Good.*@

*********************************************

Question: y1_bar = 2 y1 - 2 y2 and y2_bar = y1 - y2. Is {y1_bar, y2_bar} a fundamental set?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y1bar = 2y1 - 2 y2

y2bar = y1 - y2

Need to find y1bar’ and y2bar’:

y1bar’ = 2

y2bar’ = -1

Use the Wronskian to identify:

y1(t0)y2’(t0) - y2(t0)y1’(t0) doesn’t = 0 (if it doesn’t equal 0, then {y1,y2} IS a fundamental set)

Plug in values:

= (2y1 - 2 y2)*(-1) - (y1 - y2)*(2)

= (-2y1+2y2) - (2y1-2y2)

= (-4y1 + 4y2)

Doesn’t equal zero, therefore {y1_bar, y2_bar} IS a fundamental set

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: Note that y_1_bar = 2 * y_2_bar.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

@& Good.*@

"

Self-critique (if neces