course Mth 163 end program????[??????s?
......!!!!!!!!...................................
10:03:55 `q001. Note that this assignment has 3 questions If we know that y = k x^2, then if (x2/x1) = 7, what is (y2/y1)?
......!!!!!!!!...................................
RESPONSE --> y2 / y1 = (x2 / x1)^2 = 7^2 = 49 confidence assessment: 2
.................................................
......!!!!!!!!...................................
10:18:09 If y2 = k x2^2 and y1 = k x1^2, then y2 / y1 = (k x2^2) / ( k x1^2). Since k / k = 1 this is the same as y2 / y1 = x2^2 / x1^2, which is the same as y2 / y1 = (x2 / x1)^2. In words this tells us if y to is proportional to the square of x, then the ratio of y2 to y1 is the same as the square of the ratio of x2 to x1. Now if (x2 / x1) = 7, we see that y2 / y1 = (x2 / x1)^2 = 7^2 = 49.
......!!!!!!!!...................................
RESPONSE --> I answered this correctly. self critique assessment: 3
.................................................
......!!!!!!!!...................................
10:28:37 `q002. If we know that y = k x^3, then if (x2/x1) = 7, what is (y2/y1)?
......!!!!!!!!...................................
RESPONSE --> y2 / y1 = (x2 / x1)^3 = 7^3 = 343 confidence assessment: 3
.................................................
......!!!!!!!!...................................
10:42:51 If y2 = k x2^3 and y1 = k x1^3, then y2 / y1 = (k x2^3) / ( k x1^3). Since k / k = 1 this is the same as y2 / y1 = x2^3 / x1^3, which is the same as y2 / y1 = (x2 / x1)^3. In words this tells us if y to is proportional to the cube of x, then the ratio of y2 to y1 is the same as the cube of the ratio of x2 to x1. Now if (x2 / x1) = 7, we see that y2 / y1 = (x2 / x1)^3 = 7^3 = 343.
......!!!!!!!!...................................
RESPONSE --> I answered this one correctly also. self critique assessment: 3
.................................................
......!!!!!!!!...................................
10:49:16 `q003. If we know that y = k x^-2, then if (x2/x1) = 64, what is (y2/y1)?
......!!!!!!!!...................................
RESPONSE --> y2 / y1 = (x1 / x2)^2 = (1/64)^2 = 1/ 4096 confidence assessment: 2
.................................................
......!!!!!!!!...................................
10:54:28 If y2 = k x2^-2 and y1 = k x1^-2, then y2 / y1 = (k x2^-2) / ( k x1^-2). Since k / k = 1 this is the same as y2 / y1 = x2^-2 / x1^-2, which is the same as y2 / y1 = (x2 / x1)^-2, which is the same as 1 / (x2 / x1)^2, which gives us (x1 / x2)^2. So if y = k x^-2, then (y2 / y1) = (x1 / x2)^2.( In words this tells us if y to is inversely proportional to the square of x, then the ratio of y2 to y1 is the same as the square of the ratio of x1 to x2 (note that this is a reciprocal ratio). Now if (x2 / x1) = 64, we see that y2 / y1 = (x1 / x2)^2 = (1/64)^2 = 1/ 4096.
......!!!!!!!!...................................
RESPONSE --> Got it. No problem. self critique assessment: 3
................................................."