course Mth 163 All of these problems really help me understand everything since you work it out step by step. end programassignment #014
......!!!!!!!!...................................
08:30:49 `q001. Note that this assignment has 5 questions If a(n) = a(n-1) + 2^n, with a(0) = 3, then substitute in turn the values 1, 2, 3 and 4 into the equation to obtain the values a(1), a(2), a(3) and a(4).
......!!!!!!!!...................................
RESPONSE --> a(1) = 3 + 2 = 5 a(2) = 5 + 4 = 9 a(3) = 9 + 8 = 17 a(4) = 17 + 16 = 33 confidence assessment: 2
.................................................
......!!!!!!!!...................................
08:40:03 If we substitute n = 1 into a(n) = a(n-1) + 2^n we get a(1) = a(1-1) + 2^1 or, since 1-1 = 0 and 2^1 = 2 a(1) = a(0) + 2. Since we are given a(0) = 3 we now have a(1) = 3 + 2 = 5. If we substitute n = 2 into a(n) = a(n-1) + 2^n we get a(2) = a(2-1) + 2^2 or, since 2-1 = 1 and 2^2 = 4 a(2) = a(1) + 4. Since we are given a(1) = 5 we now have a(2) = 5 + 4 = 9. If we substitute n = 3 into a(n) = a(n-1) + 2^n we get a(3) = a(3-1) + 2^3 or, since 3-1 = 2 and 2^3 = 8 a(3) = a(2) + 8. Since we are given a(2) = 9 we now have a(3) = 9 + 8 = 17. If we substitute n = 4 into a(n) = a(n-1) + 2^n we get a(4) = a(4-1) + 2^4 or, since 4-1 = 3 and 2^4 = 16 a(4) = a(3) + 16. Since we are given a(3) = 16 we now have a(4) = 17 + 16 = 33.
......!!!!!!!!...................................
RESPONSE --> I answered this correctly. It took me a while, but I got it. These excercises really help me. All of these had helped a lot when I took my quiz, hopefully it will on the first test too. self critique assessment: 3
.................................................
......!!!!!!!!...................................
08:51:08 `q002. If a(n) = 2 * a(n-1) + n with a(0) = 3, then what are the values of a(1), a(2), a(3) and a(4)?
......!!!!!!!!...................................
RESPONSE --> a(1) = 2 * 3 + 1 = 7 a(2) = 2 * 7 + 2 = 16 a(3) = 2 * 16 + 3 = 35 a(4) = 2 * 35 + 4 = 74 confidence assessment: 3
.................................................
......!!!!!!!!...................................
08:59:15 If we substitute n = 1 into a(n) = 2 * a(n-1) + n we get a(1) = 2 * a(1-1) + 1 or since 1-1 = 0 a(1) = 2 * a(0) + 1. Since we know that a(0) = 3 we have a(1) = 2 * 3 + 1 = 7. If we substitute n = 1 into a(n) = 2 * a(n-1) + n we get a(2) = 2 * a(2-1) + 2 or since 2-1 = 1 a(2) = 2 * a(1) + 2. Since we know that a(0) = 3 we have a(2) = 2 * 7 + 2 = 16. If we substitute n = 1 into a(n) = 2 * a(n-1) + n we get a(3) = 2 * a(3-1) + 3 or since 3-1 = 2 a(3) = 2 * a(2) + 3. Since we know that a(0) = 3 we have a(3) = 2 * 16 + 3 = 35. If we substitute n = 1 into a(n) = 2 * a(n-1) + n we get a(4) = 2 * a(4-1) + 4 or since 4-1 = 3 a(4) = 2 * a(3) + 4. Since we know that a(0) = 3 we have a(4) = 2 * 35 + 4 = 74.
......!!!!!!!!...................................
RESPONSE --> Got it. self critique assessment: 3
.................................................
......!!!!!!!!...................................
09:15:57 `q003. What are the average slopes of the graph of y = x^2 + x - 2 between the x = 1 and x= 3 points, between the x = 3 and x = 5 points, between the x = 5 and x = 7 points, and between the x = 7 and x = 9 points? What is the pattern of this sequence of slopes?
......!!!!!!!!...................................
RESPONSE --> The slope between x = 1 and x = 3-- slope(rise/run) = 10 / 2 = 6 The slope between x = 3 and x = 5--slope(rise/run)= 18 / 2 = 9 The slope between x = 5 and x = 7---slope(rise/run)= 26 / 2 = 13 The slope between x = 7 and x = 9---slope(rise/run)= 34 / 2 = 17 confidence assessment: 2
.................................................
......!!!!!!!!...................................
09:31:29 At x = 1, 3, 5 , 7 and 9 we find by substituting that y = 0, 10, 28, 54 and 88. The x = 1, 3, 5, 7 and 9 points are therefore (1,0), (3,10), (5,28), (7,54) and (9,88). The run from one point to the next is always 2. The rises are respectively 10, 18, 26 and 34. The slopes are therefore slope between x = 1 and x = 3: slope = rise / run = 10 / 2 = 6. slope between x = 3 and x = 5: slope = rise / run = 18 / 2 = 9. slope between x = 5 and x = 7: slope = rise / run = 26 / 2 = 13. slope between x = 7 and x = 9: slope = rise / run = 34 / 2 = 17.
......!!!!!!!!...................................
RESPONSE --> I wasn't exacly sure what all this question was asking for, but I understad it all now completely. self critique assessment: 3
.................................................
......!!!!!!!!...................................
09:43:27 `q004. If a solid stone sphere 4 inches in diameter weighs 3 pounds, then what would be the weight of a solid stone sphere 2 feet in diameter?
......!!!!!!!!...................................
RESPONSE --> weight=748 confidence assessment: 2
.................................................
......!!!!!!!!...................................
09:56:44 The volume of a sphere is proportional to the cube of its diameters, and weight is directly proportional to volume so we have the proportionality w = k d^3, where w and d stand for weight and diameter and k is the proportionality constant. Substituting the known weight and diameter we get 3 = k * 4^3, where we understand that the weight is in pounds and the diameter in inches. This gives us 3 = 64 k so that k = 3 / 64. Our proportionality equation is now w = 3/64 * d^3. So when the diameter is 2 feet, we first recall that diameter must be in inches and say that d = 24, which we then substitute to obtain w = 3/64 * 24^3. A simple calculation gives us the final weight w = 748.
......!!!!!!!!...................................
RESPONSE --> Wow. I wasn't very confident about this one, but I got it. self critique assessment: 3
.................................................
......!!!!!!!!...................................
10:32:26 `q005. Two boxes are each constructed of a single layer of cardboard. The first box is 12 inches by 18 inches by 24 inches and weighs 22 ounces; the second is 36 inches by 54 inches by 72 inches. Using proportionality determine the weight of the second box.
......!!!!!!!!...................................
RESPONSE --> The second box would weigh 198 oz confidence assessment: 3
.................................................
......!!!!!!!!...................................
10:45:39 The ratios 36/12, 54/18 and 72/24 of the corresponding sides are all the same and all equal to 3, so the dimensions of the sides of the second box are 3 times those of the first. Since the thickness of the cardboard is the same on both boxes, only the dimensions of the rectangular sides change. The only thing that matters, therefore, is the surface area of the box. The proportionality is therefore of the form w = k x^2, where w is the weight of the box and x stands any linear dimension. It follows that w2 / w1 = (x2 / x1)^2. Since as we just saw x2 / x1 = 3, we see that w2 / w1 = 3^2 = 9. Since w1 = 22 oz, we write this as w2 / 22 oz = 9. Multiplying both sides by 22 oz we see that w2 = 22 oz * 9 = 198 oz.
......!!!!!!!!...................................
RESPONSE --> Thumbs up! self critique assessment: 3
................................................."