course Phy 121
6/24 2 PM
ph1 query 0Most queries in this course will ask you questions about class notes, readings, text problems and experiments. Since the first two assignments have been lab-related, the first two queries are related to the those exercises. While the remaining queries in this course are in question-answer format, the first two will be in the form of open-ended questions. Interpret these questions and answer them as best you can.
Different first-semester courses address the issues of experimental precision, experimental error, reporting of results and analysis in different ways and at different levels. One purpose of these initial lab exercises is to familiarize your instructor with your work and you with the instructor 's expectations.
Comment on your experience with the three lab exercises you encountered in this assignment or in recent assignments.
*********************************************
Question: This question, related to the use of the TIMER program in an experimental situation, is posed in terms of a familiar first-semester system.
Suppose you use a computer timer to time a steel ball 1 inch in diameter rolling down a straight wooden incline about 50 cm long. If the computer timer indicates that on five trials the times of an object down an incline are 2.42sec, 2.56 sec, 2.38 sec, 2.47 sec and 2.31 sec, then to what extent do you think the discrepancies could be explained by each of the following:
• The lack of precision of the TIMER program.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The TIMER program can time events to .00001 second. This means that the program is very precise. I do not think the discrepancies can be explained by this factor.
• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The uncertain precision of human triggering is more likely to explain the discrepancies. This is becomes humans are imperfect and always introduce error to an experiment.
• Actual differences in the time required for the object to travel the same distance.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The actual differences in time are not a factor in the discrepancies because they are actual measurements. The object was traveling the same distance in every trial.
• Differences in positioning the object prior to release.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The discrepancies could be explained by the differences in positioning of the object because it is assumed that the object is released by a human. Humans are not capable of perfection and therefore would not be able to release the object from exactly the same position every time it is released.
• Human uncertainty in observing exactly when the object reached the end of the incline.
To what extent to you think the discrepancies are explained by this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv This is another case in which human imperfection leads to discrepancies and could be a big component in explaining inaccuracies.
*********************************************
Question: How much uncertainty do you think each of the following would actually contribute to the uncertainty in timing a number of trials for the ball-down-an-incline lab?
• The lack of precision of the TIMER program.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv I do not think that this factor would contribute greatly to the uncertainty.
• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv I think that this factor would contribute greatly to the uncertainty, but not as greatly as the positioning of the object or observation of the object as it reached the end of the incline.
• Actual differences in the time required for the object to travel the same distance.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv I do not think that this factor would contribute greatly to the uncertainty.
• Differences in positioning the object prior to release.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv I think that this factor would contribute greatly to the uncertainty because it involves human error.
• Human uncertainty in observing exactly when the object reached the end of the incline.
To what extent to you think this factor would contribute to the uncertainty?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv I think that this factor would contribute greatly to the uncertainty because it involves human error.
*********************************************
Question: What, if anything, could you do about the uncertainty due to each of the following? Address each specifically.
• The lack of precision of the TIMER program.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv I do not think that this factor contributes to the uncertainty so there is nothing to be changed.
• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv I do not think that anything could be done about the uncertainty due to this factor.
• Actual differences in the time required for the object to travel the same distance.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv This factor is part of the data and is therefore a dependent variable which cannot be altered.
• Differences in positioning the object prior to release.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv This factor could be improved by marking the exact spot at which the object is to be dropped to make sure that it is being released from the same point for every trial.
• Human uncertainty in observing exactly when the object reached the end of the incline.
What do you think you could do about the uncertainty due to this factor?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv In order to improve this factor, you could stretch a piece of paper which could easily be torn (i.e. toilet paper, tissue paper) so that you know that as soon as the paper tears, the object has reached the end of the incline.
*********************************************
Question: If, as in the object-down-an-incline experiment, you know the distance an object rolls down an incline and the time required, explain how you will use this information to find the object 's average speed on the incline.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
The object’s average speed on the incline can be calculated by dividing the distance traveled by the time required.
Confidence Assessment: 3
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: If an object travels 40 centimeters down an incline in 5 seconds then what is its average velocity on the incline? Explain how your answer is connected to your experience.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
40 cm / 5 seconds = 8 cm/sec.
This answer is connected to my experience because it is the same process I used to calculate the object’s velocity in the Initial Timing Experiment.
Confidence Assessment: 3
*********************************************
Question: If the same object requires 3 second to reach the halfway point, what is its average velocity on the first half of the incline and what is its average velocity on the second half?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
First half: 20 cm / 3 seconds = 6.67 cm/sec.
Second half: 20 cm / 2 seconds = 10 cm/sec.
Confidence Assessment: 3
Question: `qAccording to the results of your introductory pendulum experiment, do you think doubling the length of the pendulum will result in half the frequency (frequency can be thought of as the number of cycles per minute), more than half or less than half?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
Doubling the length of the pendulum will result in more than half the frequency.
Confidence Assessment: 2
Question: `qNote that for a graph of y vs. x, a point on the x axis has y coordinate zero and a point on the y axis has x coordinate zero. In your own words explain why this is so.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
A point on the x axis has y coordinate zero because this is the point at which a line crosses the zero for y. A point on the y axis has x coordinate zero because this is the point at which a line crosses the zero for x. The x and y axes intercept at zero, so any point that lies on the x axis has y coordinate zero and any point that lies on the y axis has x coordinate zero.
Confidence Assessment: 3
*********************************************
Question: `qOn a graph of frequency vs. pendulum length (where frequency is on the vertical axis and length on the horizontal), what would it mean for the graph to intersect the vertical axis (i.e., what would it mean, in terms of the pendulum and its behavior, if the line or curve representing frequency vs. length goes through the vertical axis)? What would this tell you about the length and frequency of the pendulum?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
This would mean that the pendulum does not exist because it has absolutely no length. If it has no length, it can also have no frequency because the pendulum simply does not exist.
Confidence Assessment: 3
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qOn a graph of frequency vs. pendulum length, what would it mean for the graph to intersect the horizontal axis (i.e., what would it mean, in terms of the pendulum and its behavior, if the line or curve representing frequency vs. length goes through the horizontal axis)? What would this tell you about the length and frequency of the pendulum?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
This would mean that the pendulum is not moving. Frequency would be zero, and length cannot be determined.
Confidence Assessment: 3
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*********************************************
Question: `qIf a ball rolls down between two points with an average velocity of 6 cm / sec, and if it takes 5 sec between the points, then how far apart are the points?
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
6 cm/sec * 5 sec = 30 cm
The points are 30 cm apart.
Confidence Assessment: 3
.............................................
Given Solution:
`aOn the average the ball moves 6 centimeters every second, so in 5 seconds it will move 30 cm.
The formal calculation goes like this:
• We know that vAve = `ds / `dt, where vAve is ave velocity, `ds is displacement and `dt is the time interval.
• It follows by algebraic rearrangement that `ds = vAve * `dt.
• We are told that vAve = 6 cm / sec and `dt = 5 sec. It therefore follows that
• `ds = 6 cm / sec * 5 sec = 30 (cm / sec) * sec = 30 cm.
The details of the algebraic rearrangement are as follows:
• vAve = `ds / `dt. We multiply both sides of the equation by `dt:
• vAve * `dt = `ds / `dt * `dt. We simplify to obtain
• vAve * `dt = `ds, which we then write as{}`ds = vAve *`dt
Be sure to address anything you do not fully understand in your self-critique.
*********************************************
Question: `qYou were asked to read the text and some of the problems at the end of the section. Tell your instructor about something in the text you understood up to a point but didn't understand fully. Explain what you did understand, and ask the best question you can about what you didn't understand.
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
Your solution:
I thought that these problems were pretty basic and felt that I understood them well. However, when I got to questions 14 (determine your own mass in kg) and 15 (determining how many meters away the Sun is from the Earth), I did not understand how to complete these. I know my weight in pounds, but how can that be converted to mass in kilograms? I can look up how to convert miles to meters, but is this something I should already know?
Both of these questions could be answered knowing that an object with a mass of 1 kg has a weight of 2.2 lb, and that an inch is 2.54 centimeters. This assumes that you know how many feet in a mile, and that the Sun is 93 million miles away. All these things should be common knowledge, but it doesn't appear to be so.
For my own weight I would reason as follows:
I weigh 170 lb and every kg of my mass weighs 2.2 lb. I'll have fewer kg of mass than I will pounds of weight, so it's reasonable to conclude that my mass is 170 / 2.2 kg, or about 78 kg.
More formally 170 lb * (1 kg / (2.2 lb) ) = 170 / 2.2 kg = 78 kg, approx.. (technical point: this isn't really right because pounds and kilograms don't measure the same thing--pounds measure force and kg measure mass--but we'll worry about that later in the course).
Converting 93 million miles to kilometers:
93 million miles * (5280 feet / mile) * (12 inches / foot) * (2.54 cm / inch) * (1 meter / (100 cm) ) = 160 billion meters (approx.) or 160 million kilometers.
Confidence Assessment: 3
SOME COMMON QUESTIONS:
*********************************************
QUESTION: I didn’t understand how to calculate uncertainty for a number such as 1.34. When given examples we had problems such as 1.34 ±0.5 and with that we had a formula (0.5/1.34)*100. So I do not understand how to compute uncertainty when no estimated uncertainty is given.
INSTRUCTOR RESPONSE:
The +- number is the uncertainty in the measurement.
The percent uncertainty is the uncertainty, expressed as a percent of the number being observed.
So the question in this case is simply, 'what percent of 1.34 is 0.5?'.
• 0.5 / 1.34 = .037, approximately. So 0.5 is .037 of 1.34.
• .037 is the same as 3.7%.
I recommend understanding the principles of ratio, proportion and percent as opposed to using a formula. These principles are part of the standard school curriculum, though it does not appear that these concepts have been well mastered by the majority of students who have completed the curriculum. However most students who have the prerequisites for this course do fine with these ideas, after a little review. It will in the long run save you time to do so.
There are numerous Web resources available for understanding these concepts. You should check out these resources and let me know if you have questions.
Please feel free to include additional comments or questions:
"
Good responses. See my notes and let me know if you have questions.