course Phy 232 süšsø Þ¹[åú»wS•¾³cíF¶Óò•wýÑ‹Ù¼¢assignment #022
......!!!!!!!!...................................
10:09:13 Query introductory set six, problems 15-18 how do we determine the energy of a standing wave given the amplitude and frequency of the wave and the mass of the string?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
10:09:33 STUDENT ANSWER AND INSTRUCTOR RESPONSE: Energy = 2*pi^2*m*f^2*A^2 INSTRUCTOR RESPONSE: ** You should understand the way we obtain this formula. We assume that every point of the string in in SHM with amplitude A and frequency f. Since the total energy in SHM is the same as the maximum potential or the max kinetic energy, all we need to do is calculate the max potential energy or kinetic energy of each point on the string and add up the results. Since we know mass, frequency and amplitude, we see that we can calulate the max kinetic energy we can get the result we desire. Going back to the circular model, we see that frequency f and amplitude A imply reference point speed = circumference / period = circumference * frequency = 2 `pi A f. The oscillator at its maximum speed will match the speed of the reference point, so the maximum KE is .5 m v^2 = .5 m (2 `pi A f)^2 = 2 `pi^2 m f^2 A^2. **
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
10:10:46 If the ends of two strings are driven in phase by a single simple harmonic oscillator, and if the wave velocities in the strings are identical, but the length of one string exceeds that of the other by a known amount, then how do we determine whether a given frequency will cause the 'far ends' of the strings to oscillate in phase?
......!!!!!!!!...................................
RESPONSE --> if the difference is equal to some number of whole wavelengths
.................................................
......!!!!!!!!...................................
10:11:28 ** the question here is whether the far ends of the strings are at the same phase of motion, which occurs only if their lengths differ by exactly one, two, three, ... wavelengths. So we need to find the wavelength corresponding to the given frequency, which need not be a harmonic frequency. Any frequency will give us a wavelength; any wavelength can be divided into the difference in string lengths to determine whether the extra length is an integer number of wavelengths. Alternatively, the pulse in the longer string will be 'behind' the pulse in the shorter by the time required to travel the extra length. If we know the frequency we can determine whether this 'time difference' corresponds to a whole number of periods; if so the ends will oscillate in phase **
......!!!!!!!!...................................
RESPONSE --> didn't think about the periods, but I got the wavelengths
.................................................
......!!!!!!!!...................................
10:11:32
......!!!!!!!!...................................
RESPONSE --> blank
.................................................
......!!!!!!!!...................................
10:11:39 General College Physics and Principles of Physics 11.38: AM 550-1600 kHz, FM 88-108 mHz. What are the wavelength ranges?
......!!!!!!!!...................................
RESPONSE --> --- skipped
.................................................
......!!!!!!!!...................................
10:11:44
......!!!!!!!!...................................
RESPONSE --> blank
.................................................
......!!!!!!!!...................................
10:11:49 At 3 * 10^8 m/s: a frequency of 550 kHz = 550 * 10^3 Hz = 5.5 * 10^5 Hz will correspond to a wavelength of 3 * 10^8 m/s / (5.5 * 10^5 cycles / sec) = 545 meters. a frequency of 1600 kHz = 1.6* 10^6 Hz will correspond to a wavelength of 3 * 10^8 m/s / (1.6 * 10^6 cycles / sec) =187 meters. The wavelengths for the FM range are calculated similarly. a frequency of 88.0 mHz= 88.0 * 10^6 Hz = 8.80 * 10^7 Hz will correspond to a wavelength of 3 * 10^8 m/s / (8.80 * 10^7 cycles / sec) = 3.41 meters. The 108 mHz frequency is calculated similarly and corresponds to a wavelength of 2.78 meters.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
10:11:54
......!!!!!!!!...................................
RESPONSE --> blank
.................................................
......!!!!!!!!...................................
10:11:59 General College Physics and Principles of Physics 11.52: What are the possible frequencies of a violin string whose fundamental mode vibrates at 440 Hz?
......!!!!!!!!...................................
RESPONSE --> -- skipped
.................................................
......!!!!!!!!...................................
10:12:04
......!!!!!!!!...................................
RESPONSE --> blank
.................................................
......!!!!!!!!...................................
10:12:07 The fundamental mode for a string fixed at both ends fits half a wavelength onto the string and therefore has a wavelength equal to double its length. The next three harmonics fit 2, 3 and 4 half-wavelengths into the length of the string and so have respectively 2, 3 and 4 times the frequency of the fundamental. So the first 4 harmonics are fundamental frequency = 440 Hz First overtone or second harmonic frequency = 2 * 440 Hz = 880 Hz Second overtone or third harmonic frequency = 3 * 440 Hz = 1320 Hz Third overtone or fourth harmonic frequency = 4 * 440 Hz = 1760 Hz
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
10:12:11
......!!!!!!!!...................................
RESPONSE --> blank
.................................................
......!!!!!!!!...................................
10:12:20 General College Physics Problem: Earthquake intensity is 2.0 * 10^6 J / (m^2 s) at 48 km from the source. What is the intensity at 1 km from the source?
......!!!!!!!!...................................
RESPONSE --> equation 15.26 I1/I2 = r2^2/r1^2 I2 = I1 * (r1^2/r2^2) I2 = 2.0 x 10^6 * (48^2) = 4.608 x 10^9
.................................................
......!!!!!!!!...................................
10:13:25
......!!!!!!!!...................................
RESPONSE --> blank
.................................................
......!!!!!!!!...................................
10:13:27 The wave is assumed spherical so its surface area increases as the square of its distance and its intensity, which is power / surface area, decreases as the square of the distance. So the intensity at 1 km will be (48 km / 1 km)^2 = 2300 times as great, or 2300 * 2.0 * 10^6 J / (m^2 s) = 4.6 * 10^9 J/(m^2 s).
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
10:13:32
......!!!!!!!!...................................
RESPONSE --> blank
.................................................
......!!!!!!!!...................................
10:14:50 At what rate did energy pass through a 5.0 m^2 area at the 1 km distance?
......!!!!!!!!...................................
RESPONSE --> Intensity * area 4.608 x 10^9 * 5 = 23.04 x 10^9 W
.................................................
......!!!!!!!!...................................
10:14:54
......!!!!!!!!...................................
RESPONSE --> blank
.................................................
......!!!!!!!!...................................
10:15:34 Through a 5 m^2 area the rate of energy passage is therefore 4.6 * 10^9 J / (m^2 s) * 5.0 m^2 = 2.3 * 10^10 J / s, or 23 billion watts.
......!!!!!!!!...................................
RESPONSE -->
.................................................
"