Asst_16

course Mth 163

̧䚽ӕݪڧЮ؁assignment #016

Your work has been received. Please scroll through the document to see any inserted notes (inserted at the appropriate place in the document, in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

ҶQ̫

Precalculus I

10-22-2006

......!!!!!!!!...................................

23:51:27

behavior and source of exponential functions problem 1, perversions of laws of exponents

Why is the following erroneous: a^n * b^m = (ab) ^ (n*m)

......!!!!!!!!...................................

RESPONSE -->

a^n*b^m

2^3 * 2^2 = (2*2*2)*(2*2) = 8 * 4 = 32

(ab)^(n*m)

(2*2)^(3*2) = 4^6 = 4096

32 is not equal to 4096, so we find, a^n*a^m = a^(n+m) not a^(n*m)

.................................................

......!!!!!!!!...................................

23:51:29

STUDENT RESPONSE: my example was (4^2)(5^3) did not equal 20^6

INSTRUCTOR COMMENT

** more generally a^n * b^n = a^(n+m), which usually does not equal (ab) ^ (n * m) **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

23:52:14

Why is the follow erroneous: a^(-n) = - a^n

......!!!!!!!!...................................

RESPONSE -->

2^(-3) = 1/(2*2*2) = 1/8

(-2)^3 = (-2*-2*-2) = -8

so, 1/8 is not equal to -8

.................................................

......!!!!!!!!...................................

23:52:26

STUDENT RESPONSE: 2^-3 is not equal to -2^3

INSTRUCTOR COMMENT:

** A more general counterexample: a^(-n) = 1 / a^n is positive when a is positive whereas -a^n is negative when a is positive **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

23:53:36

Why is the following erroneous: a^n + a^m = a^(n+m)

......!!!!!!!!...................................

RESPONSE -->

a^n + a^m = a^(n+m)

2^3 + 2^2 = (2*2*2) + (2*2) = 8+4 = 12

2^(3+2) = 2^5 = 32

12 is not equal to 32

.................................................

......!!!!!!!!...................................

23:53:40

STUDENT RESPONSE: (5^3)+(5^4) is not equal to 5^7

INSTRUCTOR COMMENT:

(5^3) * (5^4) = (5^7) since (5*5*5) * (5*5*5*5) = 5*5*5*5*5*5*5 = 5^7.

However (5^3) + (5^7) = 5*5*5 + 5*5*5*5*5 = 5*5*5( 1 + 5*5) = 5^3( 1 + 5^2), not 5^7.**

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

23:55:08

STUDENT RESPONSE: Why is the following erroneous: a^0 = 0

......!!!!!!!!...................................

RESPONSE -->

4^0 = 1

if you had 4^3 * 4^0, according to the laws of exponents you could change that to 2(3+0) = 2^3, which is equal to the first amount paired with 4^0 and in order to get the same amount out as you put in, the second amount must be equal to 1, therefore, 4^0 is equal to one.

.................................................

......!!!!!!!!...................................

23:55:11

4^0 is not equal to 0

INSTRUCTOR COMMENT:

** a^(-n) * a^n = 0 but neither a^(-n) nor a^n need equal zero **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

23:56:45

Why is the following erroneous: a^n * a^m = a^(n*m).

......!!!!!!!!...................................

RESPONSE -->

a^n * a^m = a^(n*m)

2^3*2^2 = (2*2*2)*(2*2) = 8*4 = 32

2^(3*2) = 2^6 = 64

32 is not equal to 64, a^n*a^m = a^(n+m)

.................................................

......!!!!!!!!...................................

23:56:51

STUDENT RESPONSE: (4^7)(4^2) is not equal to 4^14

INSTRUCTOR COMMENT:

Right. Generally a^n * a^m = a^(n+m), not a^(n*m).

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

23:57:45

problem 2. Graph and describe

Give basic points and asymptote; y values corresponding to the basic points, ratio of these y values: y = 1200 (2^(.12 t) )

......!!!!!!!!...................................

RESPONSE -->

(0,1200)

(1,1304.082)

negative x axis is asymptote

ratio is 1304.082/1200 = 1.086735

.................................................

......!!!!!!!!...................................

23:57:49

STUDENT RESPONSE

(0,1200),(1,1304)

negative x-axis

ratio=163/150

INSTRUCTOR COMMENT:

the precise ratio is 2^.12, which is probably pretty close to 163/150

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

23:58:25

give basic points and asymptote; y values corresponding to the basic points, ratio of these y values: y = 400 ( 1.07 ) ^ t

......!!!!!!!!...................................

RESPONSE -->

(0,400)

(1,428)

negative x axis asymptote

ratio is 428/400 = 1.07

.................................................

......!!!!!!!!...................................

23:58:28

STUDENT RESPONSE

(0,400),(1,428)

Neg. x-axis

1.07 or 107/100 is ratio

INSTRUCTOR COMMENT: that ratio is correct and is of course equal to 1.07

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

23:58:49

give basic points and asymptote; y values corresponding to the basic points, ratio of these y values: y = 250 ( 1 - .12 ) ^ t

......!!!!!!!!...................................

RESPONSE -->

(0,250)

(1,220)

positive x axis asymptote

ratio is 220/250 = .88

.................................................

......!!!!!!!!...................................

23:58:52

STUDENT RESPONSE

The basic points are (0,250),(1,220)

The positive x-axis is the horizontal asymptote

The ratio of y values at the basic points is 220 / 250 = .88.

INSTRUCTOR COMMENT: Note also that the ratio .88 is equal to 1-.12; .88 is the growth factor and .12 is the growth rate.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

23:59:29

give basic points and asymptote; y values corresponding to the basic points, ratio of these y values: y = .04 ( .8 ) ^ t

......!!!!!!!!...................................

RESPONSE -->

(0,.04)

(1,0.032)

positive x axis asymptote

ratio is .032/.04 = .8

.................................................

......!!!!!!!!...................................

23:59:31

STUDENT RESPONSE

(0,.04),(1,.032) are the basic points and the asymptote is the positive x-axis.

The ratio is .32 / .4 = .8.

The pattern is that the ratio is equal to b, where b is the base for the form y = A b ^ x.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

23:59:35

problem 3. y = f(x) = 5 (1.27^x).

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:00:37

What is the ratio between the y values at x = 0 and at x = 1?

......!!!!!!!!...................................

RESPONSE -->

f(0) = 5*1.27^0 = 5

f(1) = 5*1.27^1 = 6.35

ratio 6.35/5 = 1.27

.................................................

......!!!!!!!!...................................

00:00:39

** f(1) / f(0) = 5 * 1.27^1 / ( 5 * 1.27^0) = 1.27 **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:01:31

What is the ratio between the y values at to x = 3.4 and x = 4.4?

......!!!!!!!!...................................

RESPONSE -->

f(3.4) = 5(1.27^3.4) = 11.2694483

f(4.4) = 5(1.27^4.4) = 14.31219934

ratio 14.31219934/11.2694483 = 1.27

.................................................

......!!!!!!!!...................................

00:01:33

** f(4.4) / f(3.4) = 5 * 1.27^4.4 / ( 5 * 1.27 ^3.4) = 1.27. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:02:58

Verify that the ratio of y values is again the same for your own points where x differs by 1 unit.

......!!!!!!!!...................................

RESPONSE -->

f(5) = 5(1.27^5) = 16.5191847

f(6) = 5(1.27^4) = 20.97936457

ratio 20.97936457/16.5191847 = 1.27 once again

.................................................

......!!!!!!!!...................................

00:03:01

** STUDENT RESPONSE: My points were 4.5 and 5.5, and the y ratio was again 1.27 **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:04:54

What is the ratio of y values when x values are separated by two units?

......!!!!!!!!...................................

RESPONSE -->

f(2) = 5(1.27^2) = 8.0645

f(4) = 5(1.27^4) = 13.00723205

ratio is 13.00723205/8.0645 = 1.613

.................................................

......!!!!!!!!...................................

00:04:57

** If x values are separated by 2 units then the ratio is 1.27^(x+2) / 1.27^x = 1.27^(x+2 - x) = 1.27^2 = 1.61 approx. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:06:32

problem 4. Ratio of y values at x = x1 and x = x1+1

What does your result tell you about how the ratio depends on the x value x1?

......!!!!!!!!...................................

RESPONSE -->

The ratio of y values at x = x1 and x = x1+1 is b, which is derived from Ab^(x1+1)/Ab^x1 = b^(x1+1-x1) = b^1 = b.

Since the ratio is simply b, there is no dependence on the x1 value.

.................................................

......!!!!!!!!...................................

00:06:36

** If y = A b^x then the value at x1 is A b^x1 and the value at x1 + 1 is A b ^(x1 + 1). The ratio of these values is

A b^(x1+1) / A b^x1 = b^(x1 + 1 - x1) = b^1 = b.

The ratio should have been b, where b is the base in the form y = A b^x. This is the same as in all previous examples, which shows that there is no dependence on x1. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:08:25

problem 5. y = 3 (2 ^ (.3 x) ).

What is the ratio of the two basic-point y values?

......!!!!!!!!...................................

RESPONSE -->

y =f(x)= 3 (2 ^ (.3 x) )

f(0) = 3(2^(.3*0)) = 3(2^0) = 3*1 = 3

f(1) = 3(2^(.3*1)) = 3(2^.3) = 3.69343324

ratio is 3.69343324/3 = 1.231 approx

.................................................

......!!!!!!!!...................................

00:08:29

** The basic points are the x = 0 and x = 1 points. The corresponding y values are 3(2^.(3*0) ) = 3 and 3(2^(.3 *1) ) = 3 * 2^.3 = 3.69 approx.

The ratio of these values is 3.69 / 3 = 1.23. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:08:43

What is the y = A b^x form of this function?

......!!!!!!!!...................................

RESPONSE -->

y=3(1.231^x)

.................................................

......!!!!!!!!...................................

00:08:46

** 3 (2 ^ (.3 x) ) = 3 (2^.3)x = 3 * 1.23^x, approx.

This is in the form y = A b^x for A = 3 and b = 1.23. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:09:54

What does the value of 2 ^ .3 have to do with this situation?

......!!!!!!!!...................................

RESPONSE -->

the value of 2^.3 ends up being the b value out of the form y=Ab^x

.................................................

......!!!!!!!!...................................

00:09:58

** CORRECT STUDENT RESPONSE: this is the b value in the form y = A b^x. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:14:59

problem 6 P(n+1) = (1+r) P(n), with r = .1 and P(0) = $1000.

What are P(1), P(2), ..., P(5)?

......!!!!!!!!...................................

RESPONSE -->

P(n+1) = (1+r) P(n), with r = .1 and P(0) = $1000

P(0+1) = (1+.1)P(0) so p(1) = (1.1)(1000) = $1100

P(1+1) = (1+.1)P(1) so p(2) = (1.1)(1100) = $1210

P(2+1) = (1+.1)P(2) so p(3) = (1.1)(1210) = $1331

P(3+1) = (1+.1)P(3) so p(4) = (1.1)(1331) = $1464.10

P(4+1) = (1+.1)P(4) so p(5) = (1.1)(1464.10) = $1610.51

.................................................

......!!!!!!!!...................................

00:15:03

** If n = 0 we get

P(0 + 1) = (1 + .1) * P(0), or P(1) = 1.1 * P(0). Since P(0) = $1000 we have P(1) = 1.1 * $1000 = $1100.

If n = 1 we get

P(1 + 1) = (1 + .1) * P(1), or P(2) = 1.1 * P(1). Since P(1) = $1000 we have P(2) = 1.1 * $1100 = $1210.

If n = 2 we get

P(2 + 1) = (1 + .1) * P(2), or P(3) = 1.1 * P(2). Since P(2) = $1000 we have P(3) = 1.1 * $1210 = $1331.

If n = 3 we get

P(3 + 1) = (1 + .1) * P(3), or P(4) = 1.1 * P(3). Since P(3) = $1000 we have P(4) = 1.1 * $1331 = $1464/1.

If n = 4 we get

P(4 + 1) = (1 + .1) * P(4), or P(5) = 1.1 * P(4). Since P(4) = $1000 we have P(5) = 1.1 * $1464.1 = $1610.51. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:17:54

problem 8. Q(n+1) = .85 Q(n), Q(0) = 400.

What are Q(n) for n = 1, 2, 3 and 4 /

......!!!!!!!!...................................

RESPONSE -->

Q(n+1) = .85 Q(n), Q(0) = 400

Q(0+1) = .85Q(0), so Q(1) = .85(400) = 340

Q(1+1) = .85Q(1), so Q(2) = .85(340) = 289

Q(2+1) = .85Q(2), so Q(3) = .85(289) = 245.65

Q(3+1) = .85Q(3), so Q(4) = .85(245.65) = 208.8025

.................................................

......!!!!!!!!...................................

00:17:56

** For n = 0 we have Q(0 + 1) = .85 Q(0) so Q(1) = .85 * 400 = 340.

For n = 1 we have Q(1 + 1) = .85 Q(1) so Q(2) = .85 * 340 = 289.

For n = 2 we have Q(2 + 1) = .85 Q(2) so Q(3) = .85 * 400 = 245.65.

For n = 3 we have Q(3 + 1) = .85 Q(3) so Q(4) = .85 * 400 = 208.803. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:18:27

What is the growth rate for this equation?

......!!!!!!!!...................................

RESPONSE -->

the growth rate is -.15, which is obtained by .85-1 (the growth factor is 1+growth rate)

.................................................

......!!!!!!!!...................................

00:18:29

** The growth factor is .85, which is 1 + growth rate. It follows that the growth rate is .85 - 1 = .15 **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:19:33

problem 9. interest rate 12%, initial principle $2000.

What is your difference equation?

......!!!!!!!!...................................

RESPONSE -->

you need the growth factor to make a difference equation, which is found by 1+.12 = 1.12

so P(n+1) = (1.12)P(n), with P(0) = 2000

.................................................

......!!!!!!!!...................................

00:19:35

** The growth rate is 12% = .12

The growth factor is therefore 1 + .12 and the difference equation is

P(n+1)=(1+.12)P(n), P(0)=2000. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:22:00

How did you use your difference equation to find the principle after 1, 2, 3 and 4 years and what did you get?

......!!!!!!!!...................................

RESPONSE -->

P(0+1)=(1.12)2000

P(0+1)=(1.12)2000, so P(1) = 2240

P(1+1)=(1.12)2240, so P(2) = 2508.80

P(2+1)=(1.12)2508.80, so P(3) = 2809.86

P(3+1)=(1.12)2809.86, so P(4) = 3147.04

.................................................

......!!!!!!!!...................................

00:22:04

** STUDENT RESPONSE

P(0+1)=(1+.12)2000 and so on up to P(4) was found.

P1=2240

P2=2508.8

P3=2809.856

P4=3147.03872 **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:22:40

problem 11. Texcess(t) = 50 (.97 ^ t).

What is your estimate of the time required to fall to 1/8 of the original value?

......!!!!!!!!...................................

RESPONSE -->

To fall 1/8 of the original value would take about 68.26 min.

.................................................

......!!!!!!!!...................................

00:22:47

** The original value takes place at t = 0 and is Texcess(0) = 50 * .97^0 = 50.

1/8 of the original value is therefore 1/8 * 50 = 6.25.

You have to find t such that 50 * .97^t = 6.25. Dividing both sides by 50 you get

.97^t = 6.25 / 50 or

.97^t = .125.

Use trial and error to find t:

Try t = 10: .97^10 = .74 approx. That's too high.

Try t = 100: .97^100 = .04 approx. That's too low.

So try a number between 10 and 100, probably closer to 100.

Try 70: .97^70 = .118. Lucky guess. That's close to .125 but a little low.

{Try 65: .97^65 = .138. Too high.

Try a number between 65 and 70, closer to 70 but not too much closer.

Try 68: .97^68 = .126. That's good to the nearest whole number.

The process could be continued and refined to get more accurate values of t. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:24:21

What are your ratios of temperature excess to average rate, and are they nearly constant?

......!!!!!!!!...................................

RESPONSE -->

first segment

50/23.35 = 2.14

second segment

23.35/10.90 = 2.14

third segment

10.90/5.09 = 2.14

fourth segment

5.09/2.38 = 2.14

these are the y values divided.

.................................................

......!!!!!!!!...................................

00:25:48

** If the function is 50 (.97^t) then at t = 0, 17, 34, 51, 68 we have function values 50, 29.79130219, 17.75043372, 10.57617070, 6.301557949 and average rates of change -1.18756929, -0.7082863803, -0.4220154719, -0.2514478090, -0.1498191533.

Trapezoids have 'average altitudes' 39.89565109, 23.77086796, 14.16330221, 8.438864327.

Ratio of temp excess to ave rate, using 'average altitudes' as temp excess, are therefore 39.9 / (-1.19), 23.8 / (-.708), 14.2 / (-.422), 8.44 / (-.251). These quantities vary slightly but all are close to the same value around 33. **

......!!!!!!!!...................................

RESPONSE -->

Since the difference in t values change, the resulting ratio would be different, but as long as it is the same throughout, or have I gone about the wrong process of evaluating the problem.

.................................................

......!!!!!!!!...................................

00:27:16

What are your estimates of the times required to fall to half of the three values?

......!!!!!!!!...................................

RESPONSE -->

25 = 50(.97^t) => about 22.76 min

12.5 = 50(.97^t) => about 45.51 min

6.25 = 50(.97^t) => about 68.26 min

Time is approx. 22.757 min constantly.

.................................................

......!!!!!!!!...................................

00:27:20

** STUDENT RESPONSE: The temperature falls to 50/2 = 25 at t = 22.75.

The temperature falls to 25/2 = 12.5 at t = 45.51

The temperature falls to 12.5/2 = 6.25 at t = 68.26.

The time interval required for each subsequent fall is very close to 22.75, demonstrating that the half-life is constant. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:27:52

Give the original and the simplified equation to determine the time required for Texcess to fall to half its original value.

......!!!!!!!!...................................

RESPONSE -->

25=50(.97^t); divide both sides by 50

.5=.97^t

.................................................

......!!!!!!!!...................................

00:27:55

** Texcess has an original value at t = 0, which gives us Texcess(0) = 50 * .97^0 = 50. Half its original value is therefore 25.

So our equation is

25 = 50 * .97^t.

This equation is simplified by dividing both sides by 50 to get

.97^t = 1/2. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:28:12

problem 12. Texcess(t) = 50(.97^t), room temperature {{ 25 if you used Celsius and 75 if you used Farenheit in your observations

What function Temp(t) gives temperature as a function of time?

......!!!!!!!!...................................

RESPONSE -->

temp(t) = 50(.97^t)+25

.................................................

......!!!!!!!!...................................

00:28:17

** Using 75 for room temperature and realizing that temperature is room temperature + temperature excess we obtain the function

Temp(t)=50(.97^t)+75.**

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:29:00

Identify the values of A, b and c in the generalized form y = A b^x + c.

......!!!!!!!!...................................

RESPONSE -->

temp(t) = 50(.97^t)+25

A = 50

b = .97

c = 25

.................................................

......!!!!!!!!...................................

00:29:03

** Since the function is Temp(t) = 50(.97^t)+75 , the y = A b^x + c has y = Temp(t), A = 50, b = .97 and c = 75. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:31:00

problem 14. Antiobiotic removal, 40 mg/hour when there are 200 milligrams present

At what rate would antibiotic be removed when there are 70 milligrams present?

......!!!!!!!!...................................

RESPONSE -->

(200,40)

y=kx

40=200k

k=40/200

k=.2, so y= .2 x

y=.2*70=14mg/hr.

.................................................

......!!!!!!!!...................................

00:31:06

** If the rate of removal is directly proportional the quantity present then we have

y = k x

where y is the rate of removal and x the amount present.

Since y = 40 when x = 200 we have

40 = k * 200 so that

k = 40/200 = .2.

Thus y = .2 x.

If x = 70 then we have

y = .2 * 70 = 14.

When there are 70 mg present the rate of removal is 14 mg/hr. **

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

00:31:10

Add comments on any surprises or insights you experienced as a result of this assignment.

......!!!!!!!!...................................

RESPONSE -->

.................................................

"

Very good work. Let me know if you have questions.