#$&* course MTH 174 1/28 5:45PM If your solution to stated problem does not match the given solution, you should self-critique per instructions at
......!!!!!!!!...................................
20:35:16 The integral is of x^4 e^(3 x). x^4 is a polynomial, and e^(3 x) is of the form e^(a x). So the integrand is of the form p(x) e^(a x) with p(x) = x^4 and a = 3. The correct formula to use is #14 We obtain p ' (x) = 4 x^3 p '' (x) = 12 x^2 p ''' (x) = 24 x p '''' (x) = 24. Thus the solution is 1 / a * p(x) e^(a x) - 1 / a^2 * p ' (x) e^(a x) + 1 / a^3 * p''(x) e^(a x) - 1 / a^4 * p ''' (x) e^(a x) + 1 / a^5 * p''''(x) e^(a x) = 1 / 3 * x^4 e^(3 x) - 1 / 3^2 * 4 x^3 e^(3 x) + 1 / 3^3 * 12 x^2 e^(3 x) - 1 / 3^4 * 24 x e^(3 x) + 1 / 3^5 * 24 e^(3 x) = ((1/3) x^4 - (4/9) x^3 + (4/9) x^2 - (8/27)x + (8/81) e^(3x) + C
.........................................
20:35:18
......!!!!!!!!...................................
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: ********************************************* Question: Which formula from the table did you use?
......!!!!!!!!...................................
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: OK ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: You should have used formula 14, with a = 3 and p(x) = x^4. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: Question 7.3 Problem 7 problem 7.3.7 (previously 7.3.33 1 / [ 1 + (z+2)^2 ) ]) **** What is your integral? **** Which formula from the table did you use and how did you get the integrand into the form of this formula?
.......!!!!!!!!...................................
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Rule 26 Int( 1/(x-a)(x-b)) ? confidence rating #$&*: 1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If you let u = x+2 then du = dz and the integrand becomes 1 / (1 + u^2). This is the derivative of arctan(u), so letting u = z+2 gives us the correct result arctan(z+2) + C Applying the formula: z is the variable of integration in the given problem, x is the variable of integration in the table. a is a constant, so a won't be z + 2. By Formula 24 the antiderivative of 1 / (a^2 + x^2) is 1/a * arcTan(x/a). Unlike some formulas in the table, this formula is easy to figure out using techniques of integration you should already be familiar with: 1 / (a^2 + x^2) = 1 / (a^2( 1 + x^2/a^2) ) = 1/a^2 ( 1 / (1 + (x/a)^2). Let u = x / a so du = dx / a; you get integrand 1 / a * (1 / (1 + u^2) ) , which has antiderivative 1/a * arcTan(u) = 1/a * arcTan(x/a). You don't really need to know all that, but it should clarify what is constant and what is variable. Starting with int(1/ (1+(z+2)^2) dz ), let x = z + 2 so dx = dz. You get int(1/ (1+x^2) dx ), which is formula 24 with a = 1. The result is 1/1 * arcTan(x/1), or just arcTan(x). Since x = z + 2, the final form of the integral is arcTan(z+2). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Needed to rearrange the integrand to use another formula. ------------------------------------------------ Self-critique Rating:3 ********************************************* Question: Problem 7.4 Problem 1 7.4.1 (previously 7.4.6). Integrate 2y / ( y^3 - y^2 + y - 1)
.......!!!!!!!!...................................
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 2y/(y^2 + 1)(y-1) (Ay+B/Y^2 + 1) + (C/y-1) Ay^2 - Ay + By - B + Cy^2 + C = 2y (A + C)y^2 + (-A + B)y - B + C = 2y A + C = 0 -A + B = 2 -B + C =0 A = -1; B = 1; C = 1 (-y/y^2 + 1) + (1/y^2 + 1) + (1/(y-1)) U = y^2 Du = 2ydy -du/2 = -ydy Int(1 / (u + 1)) -(1/2)ln(y^2+1) Int((1/y^2 + 1)) Arctan(y) Int((1/(y-1)) Ln(y-1) Combine: -(1/2)ln(y^2+1) + Arctan(y) + Ln(y-1) + C confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Let's integrate just y / (y^3 - y^2 + y - 1), then double the result. The denominator factors by grouping: y^3 - y^2 + y - 1 = (y^3 + y) - (y^2 + 1) = y ( y^2 + 1) - 1 ( y^2 + 1) = (y - 1) ( y^2 + 1). Using partial fractions you would then have (a y + b) /(y^2 + 1) + c /(y-1) = y / ( (y^2+1)(y-1)) where we need to evaluate a, b and c. Putting the left-hand side over a common denominator (multiply the first fraction by (y-1)/(y-1) and the second by (y^2+1) / (y^2 + 1)) we obtain: [ (a y + b)(y-1) + c(y^2+1) ] / ((y^2+1)(y-1)) = y / ((y^2+1)(y-1)). The denominators are identical so the numerators are equal, giving us (a y + b)(y-1) + c(y^2+1) = y, or a y^2 + (-a + b) y - b + c y^2 + c = y. Grouping the left-hand side: (a + c) y^2 + (-a + b) y + c - b = y. Since this must be so for all y, we have a + c = 0 (this since the coefficient of y^2 on the right is 0) -a + b = 1 (since the coefficient of y on the right is 1) c - b = 0 (since there is no constant term on the right). From the third equation we have b = c; from the first a = -c. So the second equation becomes c + c = 1, giving us 2 c = 1 so that c = 1/2. Thus b = c = 1/2 and a = -c = -1/2. Our integrand (a y + b) /(y^2 + 1) + c /(y-1) becomes 1/2 * (-y + 1 ) / (y^2 + 1) + 1/2 * 1 / (y-1), or - 1/2 * y / (y^2 + 1) + 1/2 * 1 / (y^2 + 1) + 1/2 * 1 / (y-1). An antiderivative is easily enough found with or without tables to be -1/4 ln(y^2 + 1) + 1/2 arcTan(y) + 1/2 ln | y - 1 | Doubling the result to get the integral of the given function we have - 1/2 ln(y^2 + 1) + arcTan(y) + ln | y - 1 | + c, where c now stands for an arbitrary integration constant. DER &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK, solution integrand is not the same as the original integrand. ------------------------------------------------ Self-critique Rating: ********************************************* Question: Section 7.4 Problem 7 7.4.12 (previously 7.4.29 (4th edition)). Integrate (z-1)/`sqrt(2z-z^2) **** What did you get for your integral? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: U = 2z - z^2 Du = 2 - 2z Du/-2 = -1 + z || z -1dz 1/u^(-1/2) -(2z -z^2)^(1/2)/2 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If you let u = 2z - z^2 you get du = (2 - 2z) dz or -2(z-1) dz; thus (z-1) dz = -du / 2. So (z-1) / `sqrt(2z - z^2) dz = 1 / sqrt(u) * (-du/2) = - .5 u^-.5 du, which integrates to -u^.5. Translated in terms of the original variable z we get -sqrt(2z-z^2). If you let u = 2z - z^2 you get du = (2 - 2z) dz or -2(z-1) dz; thus (z-1) dz = -du / 2. So (z-1) / `sqrt(2z - z^2) dz = 1 / sqrt(u) * (-du/2) = - .5 u^-.5 du, which integrates to -u^.5. Translated in terms of the original variable z we get -sqrt(2z-z^2). DER &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I made some algebraic mistakes. I had the exponent as negative for u while it was in the denominator. ------------------------------------------------ Self-critique Rating:3 ********************************************* Question: Section 7.4 Problem 9 7.4.9 (previously 7.4.36) partial fractions for 1 / (x (L-x))
......!!!!!!!!...................................
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (1/x) + (1/L-x) (a/x) + (b/L-x) aL - ax + bx = 1 aL = 1 -a + b = 0 A = 1/L 1/L + b = 0 b = -1/L int[(1/Lx) - (1/L^2 - Lx)] confidence rating #$&*: 1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: a / x + b / (L-x) = [ a (L-x) + bx ] / [ x(L-x)] = [ a L + (b-a)x ] / [ x(L-x)]. This is equal to 1 / [ x(L-x) ]. So a L = 1 and (b-a) = 0. Thus a = 1 / L, and since b-a=0, b = 1/L. The original function is therefore 1 / x + b / (L-x) = 1 / L [ 1 / x + 1 / (L-x) ]. Integrating we get 1 / L ( ln(x) - ln(L-x) ) = 1 / L ln(x / (L-x) ). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Don’t understand your process of integration at the end with two variables involved
......!!!!!!!!...................................
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Factored out: (y+2)/(2y+1)(y+1) A/(2y+1) + B/(y+1) Numerators combined: Ay + A + 2By + B = y + 2 Solving for A and B (A + 2B) + A + B A + 2B = 1 A + B = 2 A = 3 B = -1 Int((3/2)(1/y+1)-(1/y+1)) //logs U = 2y + 1 Du = 2dy Du/2 = dy (3/2)int(1/u) = (3/2)ln(2y+1) (3/2)ln(2y+1) - ln(y+1) confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: (y+2) / (2y^2 + 3 y + 1) = (y + 2) / ( (2y + 1) ( y + 1) ) = (y + 2) / ( 2(y + 1/2) ( y + 1) ) = 1/2 * (y + 2) / ( (y + 1/2) ( y + 1) ) The expression (y + 2) / ( (y + 1/2) ( y + 1) ) is of the form (cx + d) / ( (x - a)(x - b) ) with c = 1, d = 2, a = -1/2 and b = -1. Its antiderivative is given as 1 / (a - b) [ (ac + d) ln | x - a | - (bc + d) ln | x - b | ] + C. The final result is obtained by substitution. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): The terms in the denominator are being added; does it still work with formula 27 in the book? I don’t see where I went wrong with my work. ------------------------------------------------ Self-critique Rating:3