course Mth 272 ̦n}~nassignment #030
......!!!!!!!!...................................
00:08:30
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
00:13:35 Query problem 7.5.10 extrema of x^2+6xy+10y^2-4y+4
......!!!!!!!!...................................
RESPONSE --> fx = 2x + 6y Solve for x x = -3y fy = 6x + 20y - 4 Use x = 3y to evaluate 6(-3y) + 20y - 4 -18y + 20y - 4 2y = 4 y = 2 Then Evaluate for x x = -3(2) x = -6 So...(-6)^2+6(-6)(2)+10(2)^2-4(2)+4 36 - 72 + 40 - 8 + 4 0 Therefore... (-6,2,0) confidence assessment: 2
.................................................
......!!!!!!!!...................................
00:13:42 List the relative extrema and the saddle points of the function and tell which is which, and how you obtained each.
......!!!!!!!!...................................
RESPONSE --> fx = 2x + 6y Solve for x x = -3y fy = 6x + 20y - 4 Use x = 3y to evaluate 6(-3y) + 20y - 4 -18y + 20y - 4 2y = 4 y = 2 Then Evaluate for x x = -3(2) x = -6 So...(-6)^2+6(-6)(2)+10(2)^2-4(2)+4 36 - 72 + 40 - 8 + 4 0 Therefore... (-6,2,0) confidence assessment: 2
.................................................
......!!!!!!!!...................................
00:13:49 What are the critical points and what equations did you solve to get them?
......!!!!!!!!...................................
RESPONSE --> fx = 2x + 6y Solve for x x = -3y fy = 6x + 20y - 4 Use x = 3y to evaluate 6(-3y) + 20y - 4 -18y + 20y - 4 2y = 4 y = 2 Then Evaluate for x x = -3(2) x = -6 So...(-6)^2+6(-6)(2)+10(2)^2-4(2)+4 36 - 72 + 40 - 8 + 4 0 Therefore... (-6,2,0) confidence assessment: 2
.................................................
......!!!!!!!!...................................
00:13:59 How did you test each critical point to determine if it is a relative max, relative min or saddle point?
......!!!!!!!!...................................
RESPONSE --> fx = 2x + 6y Solve for x x = -3y fy = 6x + 20y - 4 Use x = 3y to evaluate 6(-3y) + 20y - 4 -18y + 20y - 4 2y = 4 y = 2 Then Evaluate for x x = -3(2) x = -6 So...(-6)^2+6(-6)(2)+10(2)^2-4(2)+4 36 - 72 + 40 - 8 + 4 0 Therefore... (-6,2,0) confidence assessment: 1
.................................................
......!!!!!!!!...................................
00:17:47 Query problem 7.5.28 extrema of x^3+y^3 -3x^2+6y^2+3x+12y+7
......!!!!!!!!...................................
RESPONSE --> fx = 3x^2 - 6x + 3 = 3(x^2 - 2x + 1) = 3 (x-1)(x-1) Solve for x....x = 1 fy= 3y^2 + 12y + 12 = 3(y^2 + 6y + 6)
.................................................
......!!!!!!!!...................................
00:17:53 List the relative extrema and the saddle points of the function and tell which is which, and how you obtained each.
......!!!!!!!!...................................
RESPONSE --> fx = 3x^2 - 6x + 3 = 3(x^2 - 2x + 1) = 3 (x-1)(x-1) Solve for x....x = 1 fy= 3y^2 + 12y + 12 = 3(y^2 + 6y + 6) = y(y+6) = -6 y + 6 = -6 y = 0 (1)^3+(0)^3 -3(1)^2+6(0)^2+3(1)+12(0)+7 1 + 0 + 3 + 0 + 3 + 0 + 7 4 + 3 + 7 14 (1, 0, 14) confidence assessment: 2
.................................................
......!!!!!!!!...................................
00:17:58 What are the critical points and what equations did you solve to get them?
......!!!!!!!!...................................
RESPONSE --> fx = 3x^2 - 6x + 3 = 3(x^2 - 2x + 1) = 3 (x-1)(x-1) Solve for x....x = 1 fy= 3y^2 + 12y + 12 = 3(y^2 + 6y + 6) = y(y+6) = -6 y + 6 = -6 y = 0 (1)^3+(0)^3 -3(1)^2+6(0)^2+3(1)+12(0)+7 1 + 0 + 3 + 0 + 3 + 0 + 7 4 + 3 + 7 14 (1, 0, 14) confidence assessment: 1
.................................................
......!!!!!!!!...................................
00:18:06 How did you test each critical point to determine if it is a relative max, relative min or saddle point?
......!!!!!!!!...................................
RESPONSE --> fx = 3x^2 - 6x + 3 = 3(x^2 - 2x + 1) = 3 (x-1)(x-1) Solve for x....x = 1 fy= 3y^2 + 12y + 12 = 3(y^2 + 6y + 6) = y(y+6) = -6 y + 6 = -6 y = 0 (1)^3+(0)^3 -3(1)^2+6(0)^2+3(1)+12(0)+7 1 + 0 + 3 + 0 + 3 + 0 + 7 4 + 3 + 7 14 (1, 0, 14) confidence assessment: 2
.................................................
......!!!!!!!!...................................
00:18:22 At what point(s) did the second-partials test fail?
......!!!!!!!!...................................
RESPONSE --> fx = 3x^2 - 6x + 3 = 3(x^2 - 2x + 1) = 3 (x-1)(x-1) Solve for x....x = 1 fy= 3y^2 + 12y + 12 = 3(y^2 + 6y + 6) = y(y+6) = -6 y + 6 = -6 y = 0 confidence assessment: 1
.................................................