cal_a8_openqa2

course MTh 173

Question: `q Query class notes #09What functions f(z) and g(t) express the function 2^(3t-5) as a composite f(g(t))?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

2^t and 3t-5

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** g(t) = 3t - 5, f(z) = 2^z.

The z is a 'dummy' variable; when we find f(g(t)), the g(t) is substituted for z and we get f(g(t)) = 2^(g(t)) = 2^(3t-5). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: describe in some detail how we can numerically solve a differential equation dy /dt = f(x), given a point (x0, y0) on its solution curve, an interval (x0, xf) and an increment `dx

Solution: ** You start with a point (x0, y0) on the y vs. x graph.

You evaluate the function y' for x=x0 and y=x0, which gives you a slope for your y vs. x graph.

Using the chosen increment `dx you then multiply `dx by the slope to determine how much change there will be in y, and you use this information to obtain a new approximate point on your y vs. x graph by adding the change in y to y0 and the change in x to x0.

You then repeat the process starting with the new point. **

STUDENT QUESTION:

Could you give me, when you critique this assignment, a problem that I could work out to see how this is actually done?

It seems a bit confusing to me still.

INSTRUCTOR RESPONSE: The Class Notes give additional examples.

If dy/dt = t^2 + y, and we know that y(2) = 6, then we can approximate y(2.1) as follows:

y(2) = 6 so when t = 2 we have

dy/dt = 2^2 + 6 = 10.

Therefore if `dt = .1, we obtain the approximation `dy = (dy/dt) * `dt = 10 * .1 = 1.

This approximation assumes that the rate of change dy/dt remains constant between y = 2 and y = 2.1. This isn't completely accurate, but since the interval is small the error is also small.

We conclude that y(2.1) = y(2) + `dy = 6 + 1 = 7.

Now we approximate y(2.2).

We know that y(2.1) is about 7, so when t = 2.1 we have

dy/dt = 2.1^2 + 7 = 11.41.

So if `dt = .1, we have the approximation `dy = 11.41 * .1 = 1.141.

Once again this is an approximation which assumes an unchanging value of dy/dt for the entire interval. Again the error is small, but of course it is added to (and in part based on) the error in the preceding step.

Our approximation is thus y(2.2) = y(2.1) + `dy = 7 + 1.141 = 8.141.

The process could continue. For example, we could do 7 more steps and obtain an approximation to y(3). This approximation would accumulate errors at every step, so the accuracy would decrease with every step.

We could improve our accuracy by using a smaller interval. For example we could assume intervals of .01 rather than .1.

This would require10 times as many steps, and would accumulate 10 times as many errors; however the errors would tend to be much smaller, and the total error in approximating, say, y(3) using intervals of .01 would be smaller than the total error that would result from intervals of .1.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q explain why a numerical solution to differential equation is only an approximate solution in most cases

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: It is an approximation because of the slope. The slope is changing, and when we evaluate the differential numerically, we are assuming a constant slope.

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You assume the slope at the initial point, but that slope generally changes at least a bit by the time you get to the second point. So you are assuming a constant slope when the slope actually changes.

If your interval is small enough the change in slope will have a small effect. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `q query Problem 1.4.10 Solve 2 * 5^x = 11 * 7^x

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Log2 + xlog5 = log11 + xlog7

Xlog5 – xlog7 = log11 – log2

X(log5-log7) = log11 – log2

X = (log11-log2)/(log5-log7)

X = -5.07

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Taking logs of both sides and applying the laws of logarithms we get

log 2 + x log 5 = log 11 + x log 7. Rearranging we obtain

x log 5 - x log 7 = log 11 - log 2 so that

x ( log 5 - log 7) = log 11 - log 2 and

x = (log 11 - log 2) / (log 5 - log 7).

This can be approximated as -5.07. ** DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `q Problem 1.4.6 simplify 2 ln(e^A) + 3 ln(B^e)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

2A + 3B

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Starting with 2 ln (e^A) + 3 ln (e^B) we use the fact that the natural log and exponential functions are inverses, expressed by the law of logarithms ln(e^x) = x, to get

2 * A + 3 * B or just

2A + 3B. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `q query Problem 1.4.31 (was 1.7.26) P=174 * .9^twhat is the function when converted to exponential form P = P0 e^(kt)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: P = 174e^-0.105 t

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** 174 * .9^t = 174 * e^(kt) if

e^(kt) = .9^t, which is the case if

e^k = .9. Taking the natural log of both sides we get

ln(e^k) = ln(.9) so that

k = ln(.9) = -.105 approx.

So the function is

P = 174 e^(-.105 t). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `q Query problem 1.4.44 (was 1.6.24) population function for exponential growth if 40 meg in 1980 and 56 meg in 1990; doubling timegive a population function and the doubling time

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

56=40*e^k10

e^k10 = 56/40

10k = ln(56/40)

K = 0.0336

P = 40e^0.0336t

e^0.0336t = 2

0.0336t = ln2

T = 20.6 years

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The population function is exponential and has form P = P0 * e^(kt).

Let t be the time since 1980 and population be in millions. Then we have

40 = P0 e^(k * 0) and

56 = P0 e^(k * 10).

From the first equation we get

40 = P0 so the second equation becomes

56 = 40 * e^(10 k) or

e^(10 k) = 56 / 40 = 1.4. Taking logs we get

10 k = ln(1.4) so that

k = ln(1.4) / 10 = .0336, approx.

Thus our equation is

P = 40 e^(.0336 t).

This doubles when

e^(.0336 t) = 2. Taking the ln of both sides we have

.0336 t = ln(2) so that

t = ln(2) / .0336 = 20.6, approx.

Doubling time is about 20.6 years. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `q query Problem 1.4.45 (was 1.7.42 but changed) time to get to 10% of strontium 90 if half-life 29 yrs

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

e^k*29 = 1/2

29k = ln1/2

K = -0.0239

Q = Q0e^-0.0239t

Q0/10 = Q0e^-0.0239t

e^-0.0239t = 1/10

-0.0239t = ln(1/10)

T = 96.3

confidence rating: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** If the model is Q = Q0 e^(kt) then since half-life is 29 years we know that

e^(k * 29) = 1/2. Taking ln of both sides

29 k = ln(1/2) so that

k = ln(1/2) / 29 = -.0239.

So the model is

Q = Q0 * e^(-.0239 t).

Now if we want to get 10% of the original quantity we have Q = Q0 / 10 so that

Q0 / 10 = Q0 e^(-.0239 t) and

e^(-.0239 t) = 1/10.

Taking logs of both sides and solving for t we get

t = ln(1/10) / -.0239 = 96.3 approx. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `q Problem 1.4.26 P=174 * .9^t

What is the function when converted to exponential form P = P0 e^(kt)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If P=174(.9)^t is put in the form P = P0 e^(kt) then P0 = 174 and e^(k t) = .9.t so that e^k = .9.

It follows that

e^k = .9 so that

ln(e^k) = ln(.9) or

k = ln(.9) = .105.

The function is therefore

P=174 e^-(.105 t).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q problem 1.4.32 population function for exponential growth.

If 40 meg in 1980 and 56 meg in 1990 give the equation and find the doubling time

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

P=Po b^t is the form of the function. Initial quantity is 40 * 10^6 so Po = 40 * 10^6. Substituting Po = 40 * 10^6:

P=40*10^6 b^t. At t = 10 we have P = 56 * 10^6 so we substitute for P and t:

56*10^6=40*10^6 b^10. We solve for b:

1.4=b^10

b=1.03

P=40*10^6(1.03)^t is our function.

doubling time occurs when the 40^10^6 grows to 80*10^6:

80*10^6=40*10^6(1.03)^t

2=1.03^t

log2=tlog1.03

t=23.4498

10:32:42

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating: ok

"

Good work on the questions you answered. Let me know if you have questions.