093 Query

#$&*

course MTH 277

9/13 6:41

Question: Find v dot w when v = 4i + j and w =3i + 2k.YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

v dot w = (4)(3) + (1)(0) + (0)(2)

v dot w = 12

confidence rating #$&*:232;2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: v dot w = 4 * 3 + 1 * 2 = 12 + 2 = 14.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

??? Why can you multiply the coefficient before the j in the first equation by the coefficient before the k in the second equation???

------------------------------------------------

Self-critique rating: 3

*********************************************

Question: Determine whether v = 5i - 5j + 5k and w = 8i - 10j -2k are orthogonal.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

v dot w = (5)(8) + (-5)(-10) + (5)(-2)

v dot w = 40 + 50 - 10

v dot w = 90 - 10

v dot w = 80

NOT ORTHOGONAL

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Two vectors are orthogonal if the angle between them is 90 deg, i.e., if and onlye if their dot product is zero.

The dot product of these vectors is 5 * 8 - 5 * (-8) + 5 * (-2) = 40 + 40 - 10 = 70.

They are not orthogonal.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I agree with the given solution that the vectors are not orthogonal. However, when the dot product is solved, I got a solution of 80, not 70. I believe that my solution is correct because according to the given solution, the coefficient of j in the second equation would have been -8. However, in the problem, this coefficient is -10.

------------------------------------------------

Self-critique rating: 3

*********************************************

Question: Find the angle between v = 2i +3 k and w = -j + 4k.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

cos theta = (1/ (||v|| * ||w||) (v * w)

||v|| = sqrt [ 2^2 + 3^2 ]

||v|| = sqrt [4 + 9]

||v|| = sqrt (13)

||w|| = sqrt [ (-1)^2 + 4^2 ]

||w|| = sqrt [1 + 16]

||w|| = sqrt (17)

v dot w = (2)(0) + (0)(-1) + (3)(4)

v dot w = 0 + 0 + 12

v dot w = 12

cos theta = [1/ ((sqrt 13)(sqrt 17))] * (12)

cos theta = 12/ (sqrt 221)

theta= 36.176 degrees

confidence rating #$&*:232;2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Since v dot w = || v || || w || cos(theta) we have

theta = cos^-1 ( v dot w ) || v || || w || = cos^-1 ( 10 / (sqrt(13) * sqrt( 17) ) = cos^-1 (.67) = 48 degrees, approx., or roughly.8 radians.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

??? Why is the product of the k coefficients in the second step of the given solution 10 instead of 12???

------------------------------------------------

Self-critique rating:

*********************************************

Question: Find two distinct unit vectors orthogonal to both v = i + 2j -2k and w = i + j - 2k.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x dot v = 0

x dot w = 0

x dot v = x dot w

(x1)(1) + (x2)(2) + (x3)(-2) = (x1)(1) + (x2)(1) + (x3)(-2)

x1 + 2*x2 - 2*x3 = x1 + x2 - 2*x3

x2 = 0

x1 - 2*x3 = 0

x1 = 2* x3

s = 2s

s*i + 2s*k = x

|| x || = sqrt [s^2 + (2s)^2]

|| x || = sqrt (5 * s^2)

|| x || = abs (s) * sqrt (5)

x = (s*i + 2s*k ) / (abs (s) * sqrt (5))

x = (i / sqrt (5)) + (2k / sqrt (5)) OR

x = (-i / sqrt (5)) - (2k / sqrt (5))

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Suppose a i + b j + c k is orthogonal to both. Then the dot product of this vector with each of the given vectors is zero, and we have

a + 2 b - 2 c = 0

a + b - 2 c = 0

Subtracting the second equation from the first we get b = 0.

With this value of b both our first and our second equation become

a - 2 c = 0

so that

a = 2 c.

Any vector of the form 2c i + c k is therefore orthogonal to our two vectors.

Any such vector has magnitude sqrt( (2 c)^2 + c^2) = sqrt( 5 c^2) = sqrt(5) | c |.

If c is positive then | c | = c and our vector is

(2 c i + c k ) / (sqrt(5) c) = 2 sqrt(5) / 5 i + sqrt(5) / 5 k.

If c is negative then | c | = - c and our vector will be

(2 c i + c k ) / (- sqrt(5) c) = - 2 sqrt(5) / 5 i - sqrt(5) / 5 k.

Our two solution vectors are equal and opposite. Each is a unit vector perpendicular to the two given vectors.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

When solving this problem, I got stuck after I set x1 - 2*x3 equal to 0. After briefly looking at the given response, I understood how to continue working the problem. I do not know if I could work another problem of this sort on my own. However, I do believe that with more practice, it will become a logical series of operations.

------------------------------------------------

Self-critique rating: 3

@& The basic idea is to express your unknown vector using variables, as you have done, and solve the resulting equations. If you work within that framework I think you'll be fine, and if not we'll be able to remedy it.*@

*********************************************

Question: Let v = i - j + 4k and w = -i + 3j + 2k. Find cos(theta). Find s such that v is orthogonal to sv - w. Also find t such that v - tw is orthogonal to w

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

cos theta = (1/ (||v|| * ||w||) (v dot w)

v dot w = (1)(-1) + (-1)(3) + (4)(2)

v dot w = -1 - 3 + 8

v dot w = 4

||v|| = sqrt [ 1^2 + (-1)^2 + 4^2 ]

||v|| = sqrt [ 1 + 1 + 16 ]

||v|| = sqrt (18)

||w|| = sqrt [ (-1)^2 + 3^2 + 2^2 ]

||w|| = sqrt [ 1 + 9 + 4 ]

||w|| = sqrt (14)

cos theta = (1/ sqrt 252) (4)

cos theta = (1/ sqrt 63) (2)

theta ≈ 75.4055 degrees

v dot sv - w = ( i - j + 4k) dot [(s + 1)i + (-s - 3)j + (4s - 2)k] = 0

(1)(s + 1) + (-1)(-s + 3) + (4)(4s - 2) = 0

s + 1 + s - 3 + 16s - 8 = 0

18s - 10 = 0

18s = 10

s = 5 / 9

w dot v - tw = (-i + 3j + 2k) dot [(1 - (-t))i + (-1 - 3t)j + (4 - 3t)k] = 0

(-1)(1 + t) + (3)(-1 - 3t) + (2)(4-3t) = 0

-1 - t - 3 - 9t + 8 - 6t = 0

4 - 16t = 0

4 = 16t

t = 1 / 4

confidence rating #$&*:232;2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

cos(theta) = v dot w / ( || v || || w ||) = 4 / (sqrt(18) sqrt(14) ) = 4 / (12 sqrt(7) ).

The condition v orthogonal to s v - w is

v dot (s v - w ) = 0

(i - j + 4 k ) dot ( (s - 1) i + (-s + 3) j + (4 s + 2) k ) = 0

which becomes

s - 1 + s - 3 + 16 s + 8 = 0

so that

18 s = 4

and

s = 4 / 18.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Although my answer does not match the given solution, I believe that my answer is correct. In the given solution, it says “(i - j + 4 k ) dot ( (s - 1) i + (-s + 3) j + (4 s + 2) k ) = 0.” However, I believe that the correct equation is (i - j + 4 k ) dot ( (s - (-1)) i + (-s + 3) j + (4 s + 2) k ) = 0. With this alteration, my answer is correct.

------------------------------------------------

Self-critique rating: 3

*********************************************

Question: Find the work performed when a force F = (6/11)i - (2/11)j + (6/11)k is applied to an object moving along the line from P(3,5,-4) to Q(-4,-9,-11).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

W = F dot PQ

w = [(6/11)i - (2/11)j + (6/11)k] dot [(-4 - 3)i + (-9 - 5)j + (-11 -(-4))k]

w = [(6/11)i - (2/11)j + (6/11)k] dot (-7i - 14j - 7k)

w = (6/11)(-7) + (-2/11)(-14) + (6/11)(-7)

w = (-42/11) + (28/11) - (42/11)

w = -56/11

confidence rating #$&*:232;2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: The work is F dot `ds = ( (6/11)i - (2 / 11) j + (6 / 11) k ) dot (-7 i - 14 j - 7 k ) = -42/11 + 28 / 11 - 42 /11 = 28 / 11.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

??? In the final step of the given solution, why does -42 + 28 - 42 = 28???

Self-critique rating: 3"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: Find the work performed when a force F = (6/11)i - (2/11)j + (6/11)k is applied to an object moving along the line from P(3,5,-4) to Q(-4,-9,-11).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

W = F dot PQ

w = [(6/11)i - (2/11)j + (6/11)k] dot [(-4 - 3)i + (-9 - 5)j + (-11 -(-4))k]

w = [(6/11)i - (2/11)j + (6/11)k] dot (-7i - 14j - 7k)

w = (6/11)(-7) + (-2/11)(-14) + (6/11)(-7)

w = (-42/11) + (28/11) - (42/11)

w = -56/11

confidence rating #$&*:232;2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: The work is F dot `ds = ( (6/11)i - (2 / 11) j + (6 / 11) k ) dot (-7 i - 14 j - 7 k ) = -42/11 + 28 / 11 - 42 /11 = 28 / 11.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

??? In the final step of the given solution, why does -42 + 28 - 42 = 28???

Self-critique rating: 3"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

@& Very good. Check my notes.

I haven't commented on my arithmetic, which obviously can't be trusted. Yours looks fine.*@