Query 1

#$&*

course Mth 173

6/22 11AM, Resubmission (I think I had my access code wrong)

001. `query1

*********************************************

Question: `qFor the temperature vs. clock time model, what were temperature and time for the first, third and fifth data points (express as temp vs clock time ordered pairs)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(0.95), (20,60), (40, 41)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Continue to the next question **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qAccording to your graph what would be the temperatures at clock times 7, 19 and 31?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(7, 80), (19, 62), (31, 48)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Continue to the next question **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat three points did you use as a basis for your quadratic model (express as ordered pairs)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(10,75), (40,41), (60, 30)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** A good choice of points `spreads' the points out rather than using three adjacent points. For example choosing the t = 10, 20, 30 points would not be a good idea here since the resulting model will fit those points perfectly but by the time we get to t = 60 the fit will probably not be good. Using for example t = 10, 30 and 60 would spread the three points out more and the solution would be more likely to fit the data. The solution to this problem by a former student will be outlined in the remaining answers'.

STUDENT SOLUTION (this student probably used a version different from the one you used; this solution is given here for comparison of the steps, you should not expect that the numbers given here will be the same as the numbers you obtained when you solved the problem.)

For my quadratic model, I used the three points

(10, 75)

(20, 60)

(60, 30). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the first equation you got when you substituted into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

75=100a+10b+c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from the first data point (10,75) was 100a + 10b +c = 75.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the second equation you got when you substituted into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

41=1600a+40b+c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from my second data point was 400a + 20b + c = 60 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the third equation you got when you substituted into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

30=3600a+60b+c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from my third data point was 3600a + 60b + c = 30. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat multiple of which equation did you first add to what multiple of which other equation to eliminate c, and what is the first equation you got when you eliminated c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I subtracted the first equation from the third to eliminate c, and the equation is:

-45=3500a-46b

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: First, I subtracted the second equation from the third equation in order to eliminate c.

By doing this, I obtained my first new equation

3200a + 40b = -30. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qTo get the second equation what multiple of which equation did you add to what multiple of which other quation, and what is the resulting equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I subtracted the second equation from the third, and the resulting equation was:

-11=2000a+20b

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: This time, I subtracted the first equation from the third equation in order to again eliminate c.

I obtained my second new equation:

3500a + 50b = -45**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhich variable did you eliminate from these two equations, and what was the value of the variable for which you solved these equations?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I eliminated b by multipling the first equation by 20 and the second equation by 46.

a=-.0179

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: In order to solve for a and b, I decided to eliminate b because of its smaller value. In order to do this, I multiplied the first new equation by -5

-5 ( 3200a + 40b = -30)

and multiplied the second new equation by 4

4 ( 3500a + 50b = -45)

making the values of -200 b and 200 b cancel one another out. The resulting equation is -2000 a = -310. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat equation did you get when you substituted this value into one of the 2-variable equations, and what did you get for the other variable?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a=-.0179

b=1.2409

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: After eliminating b, I solved a to equal .015

a = .015

I then substituted this value into the equation

3200 (.015) + 40b = -30

and solved to find that b = -1.95. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the value of c obtained from substituting into one of the original equations?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

c=64.3809

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: By substituting both a and b into the original equations, I found that c = 93 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qFor the temperature vs. clock time model, what were temperature and time for the first, third and fifth data points (express as temp vs clock time ordered pairs)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(0.95), (20,60), (40, 41)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Continue to the next question **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qAccording to your graph what would be the temperatures at clock times 7, 19 and 31?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(7, 80), (19, 62), (31, 48)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Continue to the next question **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat three points did you use as a basis for your quadratic model (express as ordered pairs)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(10,75), (40,41), (60, 30)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** A good choice of points `spreads' the points out rather than using three adjacent points. For example choosing the t = 10, 20, 30 points would not be a good idea here since the resulting model will fit those points perfectly but by the time we get to t = 60 the fit will probably not be good. Using for example t = 10, 30 and 60 would spread the three points out more and the solution would be more likely to fit the data. The solution to this problem by a former student will be outlined in the remaining answers'.

STUDENT SOLUTION (this student probably used a version different from the one you used; this solution is given here for comparison of the steps, you should not expect that the numbers given here will be the same as the numbers you obtained when you solved the problem.)

For my quadratic model, I used the three points

(10, 75)

(20, 60)

(60, 30). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the first equation you got when you substituted into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

75=100a+10b+c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from the first data point (10,75) was 100a + 10b +c = 75.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the second equation you got when you substituted into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

41=1600a+40b+c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from my second data point was 400a + 20b + c = 60 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the third equation you got when you substituted into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

30=3600a+60b+c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from my third data point was 3600a + 60b + c = 30. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat multiple of which equation did you first add to what multiple of which other equation to eliminate c, and what is the first equation you got when you eliminated c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I subtracted the first equation from the third to eliminate c, and the equation is:

-45=3500a-46b

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: First, I subtracted the second equation from the third equation in order to eliminate c.

By doing this, I obtained my first new equation

3200a + 40b = -30. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qTo get the second equation what multiple of which equation did you add to what multiple of which other quation, and what is the resulting equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I subtracted the second equation from the third, and the resulting equation was:

-11=2000a+20b

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: This time, I subtracted the first equation from the third equation in order to again eliminate c.

I obtained my second new equation:

3500a + 50b = -45**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhich variable did you eliminate from these two equations, and what was the value of the variable for which you solved these equations?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I eliminated b by multipling the first equation by 20 and the second equation by 46.

a=-.0179

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: In order to solve for a and b, I decided to eliminate b because of its smaller value. In order to do this, I multiplied the first new equation by -5

-5 ( 3200a + 40b = -30)

and multiplied the second new equation by 4

4 ( 3500a + 50b = -45)

making the values of -200 b and 200 b cancel one another out. The resulting equation is -2000 a = -310. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat equation did you get when you substituted this value into one of the 2-variable equations, and what did you get for the other variable?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a=-.0179

b=1.2409

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: After eliminating b, I solved a to equal .015

a = .015

I then substituted this value into the equation

3200 (.015) + 40b = -30

and solved to find that b = -1.95. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the value of c obtained from substituting into one of the original equations?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

c=64.3809

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: By substituting both a and b into the original equations, I found that c = 93 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is the resulting quadratic model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y=-.0179t^2+1.2409t+64.3809

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Therefore, the quadratic model that I obtained was

y = (.015) x^2 - (1.95)x + 93. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

Self-critique Rating:

*********************************************

Question: `qWhat did your quadratic model give you for the first, second and third clock times on your table, and what were your deviations for these clock times?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(0, 64.3809) Deviation: 30.6191

(10, 74.9999) Deviation: 0.0001

(20, 82.0389) Deviation: 22.0389

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: This model y = (.015) x^2 - (1.95)x + 93 evaluated for clock times 0, 10 and 20 gave me these numbers:

First prediction: 93

Deviation: 2

Then, since I used the next two ordered pairs to make the model, I got back

}the exact numbers with no deviation. So. the next two were

Fourth prediction: 48

Deviation: 1

Fifth prediction: 39

Deviation: 2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat was your average deviation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(30.6191 + .0001 + 22.0389)/3=

17.5527

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: My average deviation was .6 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qIs there a pattern to your deviations?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Not at all

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: There was no obvious pattern to my deviations.

INSTRUCTOR NOTE: Common patterns include deviations that start positive, go negative in the middle then end up positive again at the end, and deviations that do the opposite, going from negative to positive to negative. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qHave you studied the steps in the modeling process as presented in Overview, the Flow Model, Summaries of the Modeling Process, and do you completely understand the process?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Yes, I do completely understand the process after studying these outlines and explanations. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qHave you memorized the steps of the modeling process, and are you gonna remember them forever? Convince me.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes, I will type them from memory here:

Observe and Represent data

-orient

-observe

-organize data

-graph

Obtain a Model

-postulate

-get points

-get equation

-solve equation

-substitute parameters

Validate & Use Model

-graph

-quantify the comparison

-answer questions

-relate to the real world

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Yes, sir, I have memorized the steps of the modeling process at this point. I also printed out an outline of the steps in order to refresh my memory often, so that I will remember them forever!!!

INSTRUCTOR COMMENT: OK, I'm convinced. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qQuery Completion of Model first problem: Completion of model from your data.Give your data in the form of depth vs. clock time ordered pairs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(6.5,57.8), (13,50.2), (19.5,43.6), (26, 38.7), (32.5,34.8), (39,31.7)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION: Here are my data which are from the simulated data provided on the website under randomized problems.

(5.3, 63.7)

(10.6. 54.8)

(15.9, 46)

(21.2, 37.7)

(26.5, 32)

(31.8, 26.6). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat three points on your graph did you use as a basis for your model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(13,50.2) (26,38.7) (39,31.7)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: As the basis for my graph, I used

( 5.3, 63.7)

(15.9, 46)

(26.5, 32)**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qGive the first of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(13, 50.2):

50.2=169a+13b+c

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The point (5.3, 63.7) gives me the equation 28.09a + 5.3b + c = 63.7 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): 3

Self-critique Rating: 3

*********************************************

Question: `qGive the second of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(26, 38.7):

38.7=676a+26b+c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The point (15.9, 46) gives me the equation 252.81a +15.9b + c = 46 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qGive the third of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(39,31.7):

31.7=1521a+39b+c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The point (26.5,32) gives me the equation 702.25a + 26.5b + c = 32. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qGive the first of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Equation 3- equation 1:

-18.5=1352a+26b

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Subtracting the second equation from the third gave me 449.44a + 10.6b = -14. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qGive the second of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Equation 3 - equation 2

-7=845a+13b

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Subtracting the first equation from the third gave me 674.16a + 21.2b = -31.7. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

Self-critique Rating: ok

*********************************************

Question: `qExplain how you solved for one of the variables.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I multiplied equation 2 by -2, so that when I added equation 1 to equation 2, I could eliminate “b” as a variable and solve for “a:”

-2(-7=845a+13b)

14=-1690a-26b

equation 2: (14=-1690a-26b)

equation 1: (-18.5=1352a+26b)

new equation:

-4.5=-338a

a=.013

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated b by multiplying the first equation by 21.2, which was the b value in the second equation. Then, I multiplied the seond equation by -10.6, which was the b value of the first equation, only I made it negative so they would cancel out. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat values did you get for a and b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-4.5=-338a

a=.013

Using equation 1:

-7=845a+13b

-7=845(.013)+13b

-7=10.985+13b

-17.985=13b

b=-1.38

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: a = .0165, b = -2 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat did you then get for c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Using 50.2=169a+13b+c, c=

50.2=169(.013)+13(-1.38)+c

50.2=-15.7+c

54.3=c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: c = 73.4 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is your function model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y=.013t^2-1.38t+54.3

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: y = (.0165)x^2 + (-2)x + 73.4. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is your depth prediction for the given clock time (give clock time also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Given clock time=45 seconds

y=.013(45)^2-1.38(45)+54.3

y=18.5 cm

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The given clock time was 46 seconds, and my depth prediction was 16.314 cm.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat clock time corresponds to the given depth (give depth also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Given depth= 14cm

14=.013t^2-1.38t+54.3

0=.013t^2-1.38t+40.3

(1.38+-sqrt(-1.38^2-4(.013)(40.3)))/(2*.013)

???? It is impossible to take the sqrt of a negative number, what am I doing wrong?

@&

Nothing. A parabolic graph doesn't go past its vertex. In this situation, if the depth is too low, the parabola simply doesn't get there.

In that case you get a negative under the square root.

This indicates that the solution is impossible.

*@

confidence rating #$&*: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** INSTRUCTOR COMMENT: The exercise should have specified a depth.

The specifics will depend on your model and the requested depth. For your model y = (.0165)x^2 + (-2)x + 73.4, if we wanted to find the clock time associated with depth 68 we would note that depth is y, so we would let y be 68 and solve the resulting equation:

68 = .01t^2 - 1.6t + 126

????? Where did this equation come from? Wouldn’t you plug 68 into the model equation, y=(.0165)x^2+(-2)x+73.4? I was trying to use this example to help me with my answer, but it just confused me more.

using the quadratic formula. There are two solutions, x = 55.5 and x = 104.5, approximately. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

???? These times do not make any sense to me, because the largest time on my data sheet is 39 seconds. I checked and rechecked my work, but I still cannot find where I went wrong.

????Also, I reread the entire Modeling Project #1 and I was not sure about whether or not 14 cm was the specified depth.

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qCompletion of Model second problem: grade average Give your data in the form of grade vs. clock time ordered pairs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(0, 1)

(10, 1.790569)

(20, 2.118034)

(30, 2.369306)

(40, 2.581139)

(50, 2.767767)

(60, 2.936492)

(70, 3.09165)

(80, 3.236068)

(90, 3.371708)

(100, 3.5).

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION: Grade vs. percent of assignments reviewed

(0, 1)

(10, 1.790569)

(20, 2.118034)

(30, 2.369306)

(40, 2.581139)

(50, 2.767767)

(60, 2.936492)

(70, 3.09165)

(80, 3.236068)

(90, 3.371708)

(100, 3.5). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat three points on your graph did you use as a basis for your model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(30, 2.369306), (60, 2.936492), (90, 3.371708)

confidence rating #$&*::

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED:

(20, 2.118034)

(50, 2.767767)

(100, 3.5)**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qGive the first of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

2.369306=900a+30b+c

confidence rating #$&*:: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 400a + 20b + c = 2.118034**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

Self-critique Rating: ok

*********************************************

Question: `qGive the second of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

2.936492=3600a+60b+c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 2500a + 50b + c = 2.767767 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qGive the third of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3.371708=8100a+90b+c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 10,000a + 100b + c = 3.5 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qGive the first of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1.002402=7200a+60b

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 7500a + 50b = .732233. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qGive the second of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

0.435216=4500a+30b

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Subracting the first equation from the third I go

9600a + 80b = 1.381966 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qExplain how you solved for one of the variables.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve for a, I multiplied equation 2 by -2 so that the b variables will cancel out.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated the variable b. In order to do this, I multiplied the first new equation by 80 and the second new equation by -50. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat values did you get for a and b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-2(0.435216=4500a+30b)

-0.870432=-9000a-60b

+ 1.002402=7200a+60b

0.13197=-1800a

a=.000732

1.002402=7200a+60b, a=0.000732

1.002402=7200(0.000732)+60b

1.002402=0.52788+60b

0.474522=60b

b=.007909

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED:

a = -.0000876638

b = .01727 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat did you then get for c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

2.369306=900(.000732)+30(0.007909)+ c

c=2.64411

confidence rating #$&*:: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: c = 1.773. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

Self-critique Rating: ok

*********************************************

Question: `qWhat is your function model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y=.000732t^2+.007909t+2.64411

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** y = -.0000876638 x^2 + (.01727)x + 1.773 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat is your percent-of-review prediction for the given range of grades (give grade range also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

grade average desired is 3.3.

??? I have no clue if I’m doing this right, I just used the grade average that was given in the given solution. The range on the class notes was 0-100%, so I guess we’re using that? I would assume that 0-100% is implied as a range, so I honestly have no clue.

3.3=.000732x^2+.007909x+2.64411

0=.000732x^2+.007909x-.65589

x=(-.007909+-sqrt(.007909^2-(4*.00732*-.65589)))/(2(.00732))

x=-10.0215 x=8.94103

???? These answers make no sense with the context of the problem. I don’t know what I’m doing wrong.

@&

You very likely have an arithmetic error at some point of your solution of the equations. This will lead to non-intuitive solutions.

You have, however, done the right thing in this step, which is to set the model equal to 3.3, and solve the resulting quadratic equation.

It's also very good that you recognize that your results don't seem to make sense, though in the last model they did.

*@

confidence rating #$&*:: 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The precise solution depends on the model-desired average.

For example if the model is y = -.00028 x^2 + .06 x + .5 (your model will probably be different from this) and the grade average desired is 3.3 we would find the percent of review x corresponding to grade average y = 3.3 then we have

3.3 = -.00028 x^2 + .06 x + .5.

This equation is easily solved using the quadratic formula, remembering to put the equation into the required form a x^2 + b x + c = 0.

We get two solutions, x = 69 and x = 146. Our solutions are therefore 69% grade review, which is realistically within the 0 - 100% range, and 146%, which we might reject as being outside the range of possibility.

To get a range you would solve two equations, on each for the percent of review for the lower and higher ends of the range.

In many models the attempt to solve for a 4.0 average results in an expression which includes the square root of a negative number; this indicates that there is no real solution and that a 4.0 is not possible. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

??? I am genuinely confused at what this problem is trying to ask.

------------------------------------------------

Self-critique Rating: 1

*********************************************

Question: `qWhat grade average corresponds to the given percent of review (give grade average also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Using x=8.94 (since that’s the only positive answer I got):

y=(.00732*8.94^2)+(.007909*8.94)+2.64411

y=3.30

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Here you plug in your percent of review for the variable. For example if your model is y = -.00028 x^2 + .06 x + .5 and the percent of review is 75, you plug in 75 for x and evaluate the result. The result gives you the grade average corresponding to the percent of review according to the model. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qHow well does your model fit the data (support your answer)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Not well because if the student only turned in 8.94% of their assignments, then, according to the data, they would have a grade average of about 1.5. With my model, the student got 3.3, which is grossly wrong. I did not calculate the other results because I do not see the point when I am clearly doing something wrong.

confidence rating #$&*:: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You should have evaluated your function at each given percent of review-i.e., at 0, 10, 20, 30, . 100 to get the predicted grade average for each. Comparing your results with the given grade averages shows whether your model fits the data. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qillumination vs. distance

Give your data in the form of illumination vs. distance ordered pairs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(1, 935.1395)

(2, 264.4411)

(3, 105.1209)

(4, 61.01488)

(5, 43.06238)

(6, 25.91537)

(7, 19.92772)

(8, 16.27232)

(9, 11.28082)

(10, 9.484465)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION: (1, 935.1395)

(2, 264.4411)

(3, 105.1209)

(4, 61.01488)

(5, 43.06238)

(6, 25.91537)

(7, 19.92772)

(8, 16.27232)

(9, 11.28082)

(10, 9.484465)**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat three points on your graph did you use as a basis for your model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(3, 105.1209), (6, 25.91537), (9, 11.28082)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED:

(2, 264.4411)

(4, 61.01488)

(8, 16.27232) **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qGive the first of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

105.1209=9a+3b+c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 4a + 2b + c = 264.4411**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qGive the second of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

25.91537=36a+6b+c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 16a + 4b + c = 61.01488**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qGive the third of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

11.28082=81a+9b+c

confidence rating #$&*:: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 64a + 8b + c = 16.27232**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

Self-critique Rating: ok\

*********************************************

Question: `qGive the first of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-93.8407=72a+6b

confidence rating #$&*:: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 48a + 4b = -44.74256**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

Self-critique Rating: ok

*********************************************

Question: `qGive the second of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-14.63517=45a+3b

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 60a + 6b = -248.16878**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qExplain how you solved for one of the variables.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

multiply the second equation by -2, so that the b’s will cancel out:

-2(-14.63517=45a+3b)

29.27034=-90a-6b

-93.8407=72a+6b

a=3.587242

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: I solved for a by eliminating the variable b. I multiplied the first new equation by 4 and the second new equation by -6 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

Self-critique Rating: ok

*********************************************

Question: `qWhat values did you get for a and b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a=3.587242

b=-58.68702

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: a = 15.088, b = -192.24 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

Self-critique Rating: ok

*********************************************

Question: `qWhat did you then get for c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

c=101.5337

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: c = 588.5691**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: `qWhat is your function model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y=3.587242x^2-58.68702x+101.5337

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: y = (15.088) x^2 - (192.24)x + 588.5691 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is your illumination prediction for the given distance (give distance also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Given distance=1.6 Earth Distances

y=3.587242(1.6)^2-58.68702(1.6)+101.5337

y=16.81781 W/m^2

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The given distance was 1.6 Earth distances from the sun. My illumination prediction was 319.61 w/m^2, obtained by evaluating my function model for x = 1.6. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: `qWhat distances correspond to the given illumination range (give illumination range also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

???? Do I use the y-value I obtained in the last problem?

16.81781=3.587242x^2-58.68702x+101.5337

(58.68702+-sqrt(-58.68702^2-(4*3.587242*101.5337)))/(2(3.587242))

x=-674.945 x=691.305

@&

You probably should have used y values 25 and 100, solving the resulting two equations.

However note that the quadratic formula only applies to an equation of the form

a x^2 + b x + c = 0.

The quadratic expression must be equal to zero for the formula to apply.

Also it appears that you might have neglected to take that square root, which resulted in unrealistically high values for x.

*@

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The precise solution depends on the model and the range of averages.

For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the equations

25=9.4 r^2 - 139 r + 500

and

100 =9.4 r^2 - 139 r + 500

Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the data.

The solutions which correspond to the data are

r = 3.9 when y = 100 and r = 5.4 when y = 25.

So when the distance x has range 3.9 - 5.4 the illumination range is 25 to 100.

Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are more accurately modeled by exponential or power functions. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qWhat distances correspond to the given illumination range (give illumination range also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

???? Do I use the y-value I obtained in the last problem?

16.81781=3.587242x^2-58.68702x+101.5337

(58.68702+-sqrt(-58.68702^2-(4*3.587242*101.5337)))/(2(3.587242))

x=-674.945 x=691.305

@&

You probably should have used y values 25 and 100, solving the resulting two equations.

However note that the quadratic formula only applies to an equation of the form

a x^2 + b x + c = 0.

The quadratic expression must be equal to zero for the formula to apply.

Also it appears that you might have neglected to take that square root, which resulted in unrealistically high values for x.

*@

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The precise solution depends on the model and the range of averages.

For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the equations

25=9.4 r^2 - 139 r + 500

and

100 =9.4 r^2 - 139 r + 500

Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the data.

The solutions which correspond to the data are

r = 3.9 when y = 100 and r = 5.4 when y = 25.

So when the distance x has range 3.9 - 5.4 the illumination range is 25 to 100.

Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are more accurately modeled by exponential or power functions. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

*********************************************

Question: `qWhat distances correspond to the given illumination range (give illumination range also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

???? Do I use the y-value I obtained in the last problem?

16.81781=3.587242x^2-58.68702x+101.5337

(58.68702+-sqrt(-58.68702^2-(4*3.587242*101.5337)))/(2(3.587242))

x=-674.945 x=691.305

@&

You probably should have used y values 25 and 100, solving the resulting two equations.

However note that the quadratic formula only applies to an equation of the form

a x^2 + b x + c = 0.

The quadratic expression must be equal to zero for the formula to apply.

Also it appears that you might have neglected to take that square root, which resulted in unrealistically high values for x.

*@

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The precise solution depends on the model and the range of averages.

For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the equations

25=9.4 r^2 - 139 r + 500

and

100 =9.4 r^2 - 139 r + 500

Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the data.

The solutions which correspond to the data are

r = 3.9 when y = 100 and r = 5.4 when y = 25.

So when the distance x has range 3.9 - 5.4 the illumination range is 25 to 100.

Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are more accurately modeled by exponential or power functions. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!

@&

Small arithmetic errors will usually lead to big errors in the models and the results obtained, and I believe you've made a few such errors.

However you are using the process correctly. I see no problems other than a few errors in detail.

Check the notes I've inserted.

*@