#$&* course MTH 271 2/8 4:19pm 002. `Query 2*********************************************
.............................................
Given Solution: `a Continue to the next question ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Because I do not drink soda, and no-one I know was able to give me a 2-L bottle, I had to use the simulated data from the website. I read the explanation of the modeling very thoroughly, and do completely understand how the project was supposed to work. ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qAccording to your graph what would be the depth at clock times 7, 19 and 31? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (7, 57.2), (19, 41.5) (31, 31.4) confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a Continue to the next question ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): While I tried to be as thorough as possible, it was not simple to find exact points on my graph. I tried to estimate as well as possible the tenths. ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat three points did you use as a basis for your quadratic model (express as ordered pairs)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (8.2,57.2), (16.4, 47.4), (24.6, 38.8) confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aA good choice of points `spreads' the points out rather than using three adjacent points. For example choosing the t = 10, 20, 30 points would not be a good idea here since the resulting model will fit those points perfectly but by the time we get to t = 60 the fit will probably not be good. Using for example t = 10, 30 and 60 would spread the three points out more and the solution would be more likely to fit the data. The solution to this problem by a former student will be outlined in the remaining `answers'. STUDENT SOLUTION (this student probably used a version different from the one you used; this solution is given here for comparison of the steps) For my quadratic model, I used the three points (10, 75) (20, 60) (60, 30). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 Question: `qWhat is the first equation you got when you substituted into the form of a quadratic? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 57.2= 67.24a + 8.2b + c confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: The equation that I got from the first data point (10,75) was 100a + 10b +c = 75.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat is the second equation you got when you substituted into the form of a quadratic? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 47.4 =268.96a + 16.4b + c confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: The equation that I got from my second data point was 400a + 20b + c = 60 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat is the third equation you got when you substituted into the form of a quadratic? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 38.8= 605.16a + 24.6b + c confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: The equation that I got from my third data point was 3600a + 60b + c = 30. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat multiple of which equation did you first add to what multiple of which other equation to eliminate c, and what is the first equation you got when you eliminated c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I subtracted the third equation from the first, getting the equation 18.4= -537.92a -16.4b confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: First, I subtracted the second equation from the third equation in order to eliminate c. By doing this, I obtained my first new equation 3200a + 40b = -30. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: To get the second equation what multiple of which equation did you add to what multiple of which other quation, and what is the resulting equation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Second, I subtracted the first equation from the second to eliminate c, getting the equation -9.8= 201.72a +8.2b confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: This time, I subtracted the first equation from the third equation in order to again eliminate c. I obtained my second new equation: 3500a + 50b = -45** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Which variable did you eliminate from these two equations, and what was its value? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Next, I eliminated b from these two new equations by multiplying the second by 2 and adding the two together, getting the equation -1.2 = -134.48a. The value of a= 0.0089 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: In order to solve for a and b, I decided to eliminate b because of its smaller value. In order to do this, I multiplied the first new equation by -5 -5 ( 3200a + 40b = -30) and multiplied the second new equation by 4 4 ( 3500a + 50b = -45) making the values of -200 b and 200 b cancel one another out. The resulting equation is -2000 a = -310. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat equation did you get when you substituted this value into one of the 2-variable equations, and what did you get for the other variable? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I substituted a into the equation -9.8= 201.72a +8.2b to get the value of b. b= -1.415 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: After eliminating b, I solved a to equal .015 a = .015 I then substituted this value into the equation 3200 (.015) + 40b = -30 and solved to find that b = -1.95. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: What is the value of c obtained from substituting into one of the original equations? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I chose the third equation, and substituted a and b in to find c. c= 68.2 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: By substituting both a and b into the original equations, I found that c = 93 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat is the resulting quadratic model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Y= (0.0089)t^2 + (-1.415)t + 68.2 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: Therefore, the quadratic model that I obtained was y = (.015) x^2 - (1.95)x + 93. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique Rating: 3 ********************************************* Question: `qWhat did your quadratic model give you for the first, second and third clock times on your table, and what were your deviations for these clock times? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: For the first, the model gave me 62.5481409, so it deviated from the 62.7 I obtained by .1 cm. The second value given was 57.195436, so the deviation was by 0.01 cm. The third value given was 52.141981, which was not different. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: This model y = (.015) x^2 - (1.95)x + 93 evaluated for clock times 0, 10 and 20 gave me these numbers: First prediction: 93 Deviation: 2 Then, since I used the next two ordered pairs to make the model, I got back }the exact numbers with no deviation. So.the next two were Fourth prediction: 48 Deviation: 1 Fifth prediction: 39 Deviation: 2. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: What was your average deviation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (0 + 0.1 + 0.1)/ 3= 0.0367 was the average deviation. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: My average deviation was .6 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Is there a pattern to your deviations? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I did not see any pattern within my deviations. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: There was no obvious pattern to my deviations. INSTRUCTOR NOTE: Common patterns include deviations that start positive, go negative in the middle then end up positive again at the end, and deviations that do the opposite, going from negative to positive to negative. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Have you studied the steps in the modeling process as presented in Overview, the Flow Model, Summaries of the Modeling Process, and do you completely understand the process? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: As far as I know, I do understand the modeling process after reading the summaries and explanations. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: Yes, I do completely understand the process after studying these outlines and explanations. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Have you memorized the steps of the modeling process, and are you gonna remember them forever? Convince me. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I have not yet fully memorized all of the steps of the modeling process, but have printed out the outline and descriptions, and have been working on memorizing the steps, and once memorized, I will probably never forget them because the outline has so far already changed how I view math problems already. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: Yes, sir, I have memorized the steps of the modeling process at this point. I also printed out an outline of the steps in order to refresh my memory often, so that I will remember them forever!!! INSTRUCTOR COMMENT: OK, I'm convinced. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Query Completion of Model first problem: Completion of model from your data.Give your data in the form of depth vs. clock time ordered pairs. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The data, obtained from the simulated data on the website, is as follows: Time, T Depth, Y 2.8 82.1 5.6 76.8 8.4 72.7 11.2 69.8 14 66.8 16.8 63.7 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION: Here are my data which are from the simulated data provided on the website under randomized problems. (5.3, 63.7) (10.6. 54.8) (15.9, 46) (21.2, 37.7) (26.5, 32) (31.8, 26.6). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: What three points on your graph did you use as a basis for your model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I used the first, third, and last points for my model. (2.8, 82.1), (8.4, 72.7), (16.8, 63.7) confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: As the basis for my graph, I used ( 5.3, 63.7) (15.9, 46) (26.5, 32)** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Give the first of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The first equation I obtained was 82.1 = 7.84a + 2.8b +c confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: The point (5.3, 63.7) gives me the equation 28.09a + 5.3b + c = 63.7 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Give the second of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The second equation is 72.7 = 70.56a + 8.4b + c confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: The point (15.9, 46) gives me the equation 252.81a +15.9b + c = 46 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Give the third of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The third set of points gives the equation 63.7 = 282.24a + 16.8b + c confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: The point (26.5,32) gives me the equation 702.25a + 26.5b + c = 32. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Give the first of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I subtracted the first equation from the second to eliminate c and got the equation 9.4 = -62.72a - 5.6b. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: Subtracting the second equation from the third gave me 449.44a + 10.6b = -14. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Give the second of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I subtracted the first equation from the third, and got 18.4 = -274.4a - 14b confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a ** STUDENT SOLUTION CONTINUED: Subtracting the first equation from the third gave me 674.16a + 21.2b = -31.7. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qExplain how you solved for one of the variables. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I multiplied the first new equation by 5 and the second new equation by -2 to gain a common denominator, or factor. Then I subtracted the first new from the second new equation to gain a value for a= 0.0434. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated b by multiplying the first equation by 21.2, which was the b value in the second equation. Then, I multiplied the seond equation by -10.6, which was the b value of the first equation, only I made it negative so they would cancel out. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat values did you get for a and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A= 0.0434 B= -2.1643 confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: a = .0165, b = -2 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat did you then get for c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: C= 76.379 confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: c = 73.4 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: What is your function model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Y= 0.0434t^2 + (-2.1643)t + 76.379 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: y = (.0165)x^2 + (-2)x + 73.4. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: What is your depth prediction for the given clock time (give clock time also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: At 10 seconds the prediction is 59.097cm. confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: The given clock time was 46 seconds, and my depth prediction was 16.314 cm.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: What clock time corresponds to the given depth (give depth also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (49.241, 75) confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a The specifics will depend on your model and the requested depth. For your model y = (.0165)x^2 + (-2)x + 73.4, if we wanted to find the clock time associated with depth 68 we would note that depth is y, so we would let y be 68 and solve the resulting equation: 68 = .01t^2 - 1.6t + 126 using the quadratic formula. There are two solutions, x = 55.5 and x = 104.5, approximately. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Completion of Model second problem: grade average Give your data in the form of grade vs. clock time ordered pairs. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Data Set 1: (% of Assignments Reviewed, Grade Average) (0,1) (10, 1.790569) (20, 2.118034) (30, 2.369306) (40, 2.581139) (50, 2.767767) (60, 2.936492) (70, 3.09165) (80, 3.236068) (90, 3.371708) (100, 3.5) confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION: Grade vs. percent of assignments reviewed (0, 1) (10, 1.790569) (20, 2.118034) (30, 2.369306) (40, 2.581139) (50, 2.767767) (60, 2.936492) (70, 3.09165) (80, 3.236068) (90, 3.371708) (100, 3.5). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: What three points on your graph did you use as a basis for your model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (10, 1.790569) , (60, 2.936492) , (100, 3.5) confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: (20, 2.118034) (50, 2.767767) (100, 3.5)** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Give the first of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1.790569= 100a+ 10b +c confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: 400a + 20b + c = 2.118034** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Give the second of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 2.936492= 3600a +60b +c confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: 2500a + 50b + c = 2.767767 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Give the third of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3.5= 10000a + 100b +c confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: 10,000a + 100b + c = 3.5 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Give the first of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Q1- (3.5 =10000a +100b +c) - (2.936492 = 3600a + 60b + c)= 0.563508 = 6400a + 40b confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: 7500a + 50b = .732233. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Give the second of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Q2 - (3.5 = 10000a + 100b + c) - (1.709431 = 100a + 10b + c)= 1.766152 = 9000a + 90b confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: Subracting the first equation from the third I go 9600a + 80b = 1.381966 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Explain how you solved for one of the variables. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I multiplied q1 by -9 and q2 by 4 to obtain a common factor. Then, I subtracted q2 from q1 to obtain the value for a. A= -0.0000818 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated the variable b. In order to do this, I multiplied the first new equation by 80 and the second new equation by -50. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: What values did you get for a and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A= -0.0000818 B= 0.0272 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: STUDENT SOLUTION CONTINUED: a = -.0000876638 b = .01727 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: ********************************************* Question: What did you then get for c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: C= 1.6 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: STUDENT SOLUTION CONTINUED: c = 1.773. ** Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: What is your function model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Y= (-0.0000818)t^2 + 0.0272t + 1.6 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT ANSWER: y = (0) x^2 + (.01727)x + 1.773 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: What is your percent-of-review prediction for the given range of grades (give grade range also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: There is no solution for the 4.0- it is not attainable with this graph. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a The precise solution depends on the model desired average. For example if the model is y = -.00028 x^2 + .06 x + .5 (your model will probably be different from this) and the grade average desired is 3.3 we would find the percent of review x corresponding to grade average y = 3.3 then we have 3.3 = -.00028 x^2 + .06 x + .5. This equation is easily solved using the quadratic formula, remembering to put the equation into the required form a x^2 + b x + c = 0. We get two solutions, x = 69 and x = 146. Our solutions are therefore 69% grade review, which is realistically within the 0 - 100% range, and 146%, which we might reject as being outside the range of possibility. To get a range you would solve two equations, on each for the percent of review for the lower and higher ends of the range. In many models the attempt to solve for a 4.0 average results in an expression which includes the square root of a negative number; this indicates that there is no real solution and that a 4.0 is not possible. ** STUDENT QUESTION I did the quadratic formula but came up with negative numbers or errors?? INSTRUCTOR RESPONSE The possibility of a negative under the square root is addressed in the last line of the given solution. A little more detail: It's perfectly plausible that your quadratic function will 'peak' before reaching y = 4.0; perhaps even before reaching y = 3.0. (as you should know if you've had precaculus, and as you will see soon if you haven't, the graph of your quadratic function is a parabola opening downward, and its vertex might well lie below y = 4.0). In that case the quadratic equation will tell you so by giving you a negative under the square root. The interpretation would then be that 4.0 is not attainable, no matter how much you review. This would probably indicate a really tough school. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat grade average corresponds to the given percent of review (give grade average also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: For 80%, the average grade is 3.25 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a Here you plug in your percent of review for the variable. For example if your model is y = -.00028 x^2 + .06 x + .5 and the percent of review is 75, you plug in 75 for x and evaluate the result. The result gives you the grade average corresponding to the percent of review according to the model. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: How well does your model fit the data (support your answer)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: This model seems to fit the data pretty well- the model’s numbers seem to be a little higher than those given, but are always within about a tenth of the actual results, either higher or lower. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a You should have evaluated your function at each given percent of review-i.e., at 0, 10, 20, 30, . 100 to get the predicted grade average for each. Comparing your results with the given grade averages shows whether your model fits the data. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: illumination vs. distance Give your data in the form of illumination vs. distance ordered pairs. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (1, 935.1395) (2, 264.4411) (3,105.1209) (4, 61.01488) (5, 43.06238) (6, 25.91537) (7, 19.92772) (8, 16.27232) (9, 11.28082) (10, 9.484465) confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION: (1, 935.1395) (2, 264..4411) (3, 105.1209) (4, 61.01488) (5, 43.06238) (6, 25.91537) (7, 19.92772) (8, 16.27232) (9, 11.28082) (10, 9.484465)** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: What three points on your graph did you use as a basis for your model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (1, 935.1395), (5, 43.06238), (10, 9.484465) confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: (2, 264.4411) (4, 61.01488) (8, 16.27232) ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Give the first of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 935.1395 = 1a + 1b + c confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: 4a + 2b + c = 264.4411** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Give the second of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 43.06238 = 25a + 5b + c confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: 16a + 4b + c = 61.01488** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qGive the third of your three equations. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 9.484465 = 100a + 10b + c confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: 64a + 8b + c = 16.27232** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique Rating: 3 ********************************************* Question: `qGive the first of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Q1: I subtracted 2 from 3 and got -33.577915= 75a +5b confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: 48a + 4b = -44.74256** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qGive the second of the equations you got when you eliminated c. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Q2: I subtracted 1 from 2 and got -892.07712= 24a + 4b confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: 60a + 6b = -248.16878** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qExplain how you solved for one of the variables. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To get a, I multiplied q1 by -4 and q2 by 5 to get a common factor. I got the value of a as 24.03374411, or 24.034 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: I solved for a by eliminating the variable b. I multiplied the first new equation by 4 and the second new equation by -6 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat values did you get for a and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A= 24.034 B= -367.223 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: a = 15.088, b = -192.24 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat did you then get for c? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: C= 1278.33 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: c = 588.5691** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qWhat is your function model? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y= 24.034t^2 + -367.223t + 1278.33 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: y = (15.088) x^2 - (192.24)x + 588.5691 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK Self-critique Rating: 3 ********************************************* Question: `qWhat is your illumination prediction for the given distance (give distance also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: At distance 1.6, the prediction is 752.3 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a STUDENT SOLUTION CONTINUED: The given distance was 1.6 Earth distances from the sun. My illumination prediction was 319.61 w/m^2, obtained by evaluating my function model for x = 1.6. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `qWhat distances correspond to the given illumination range (give illumination range also)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 5.15 is the lower limit, and 10.698 is the upper limit. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a The precise solution depends on the model and the range of averages. For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the equations 25=9.4 r^2 - 139 r + 500 and 100 =9.4 r^2 - 139 r + 500 Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the data. The solutions which correspond to the data are r = 3.9 when y = 100 and r = 5.4 when y = 25. So when the distance x has range 50% - 69% if the illumination range is 25 to 100. Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are more accurately modeled by exponential or power functions. ** STUDENT SOLUTION TO SIMILAR PROBLEM When putting 25 and 100 into my function model, I got x = 8.1 and 8.4. so when the distance has an x range between 8.1 and 8.5 the illuminating range is 25 to 100. INSTRUCTOR COMMENT You don't show the equations you solved. Each equation has two possible solutions, and your given results are consistent with solutions to the equation. 8.1 is a solution to the equation 25 = 40.0 x^2 -492 x + 1387 and 8.4 is a solution to 100 = 40.x^2 -492 x + 1387 However if we consider the data (1, 935.1395) (2, 264..4411) (3, 105.1209) (4, 61.01488) (5, 43.06238) (6, 25.91537) (7, 19.92772) (8, 16.27232) (9, 11.28082) (10, 9.484465) the range from x = 8.1 to x = 8.4 occurs when the illumination is decreasing. Your illumination values are 25 at x = 8.1, and 100 at x = 8.4, which would indicate increasing illumination. It's clear that you've done almost all of the right things. But you didn't consider both solutions to the quadratic equations. For example the equation 100 = 40.03x^2 + (-491.57)x + 1386.81 has solutions 3.8 and 8.4, approx.. The second agrees with the value you gave, but you don't seem to have considered the first. You do need to choose between the two solutions. If you look at your data (which I've copied below for easy reference) you see that illumination 100 was observed around x = 3, and by the time you get to x = 8 the illumination has fallen to somewhere around 20. So the solution x = 3.8 is consistent with the pattern of the data, while x = 8.4 is not. The x = 3.8 solution gives us the point (3.8, 100), which fits nicely into the data set. The equation 25 = 40.0 x^2 -492 x + 1387 has solutions x = 4.2 and x = 8.1. Neither solution fits the data set particularly well (this data can't be fit very well by a quadratic function), but the x = 8.1 solution and the corresponding point (8.1, 25) fits into the observed data points better than would the points (4.2, 25). So we probably want to conclude that x values between 3.8 and 8.1 result in illuminations between 100 and 25. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Solve the equation • | 3x + 1 | > 4. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: -5/3 > x OR 1 < x confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The equation • | a | >= b translates to the two equations • a >= b OR a <= -b. In this case | 3x+1 | > 4 translates to • 3x + 1 >= 4 OR 3x + 1 <= -4, which on solution for x gives • x >= 1 OR x < = -5/3. ** ALTERNATIVE (and very similar) EXPLANATION: the given inequality is equivalent to the two inequalities 3x+1 >= 4 and 3x+1 =< -4. The solution to the first is x >= 1. The solution to the second is x <= -5/3. Thus the solution is • x >= 1 OR x <= -5/3. COMMON ERROR: -5/3 > x > 1 INSTRUCTOR COMMENT: It isn't possible for -5/3 to be greater than a quantity and to have that same quantity > 1. Had the inequality read |3x+1|<4 you could have translated it to -4 < 3x+1 <4, which could be rearranged to -5/3 < x < 1. However reversing the directions of the inequalities changes their meaning. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `q0.2.24 (was 0.2.16 solve abs(2x+1)<5. What inequality or inequalities did you get from the given inequality, and are these 'and' or 'or' inequalities? Give your solution. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: -3 < x < 2 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a abs(a) < b means a < b AND -b < -a so from the given inequality abs(2x+1) < 5 you get -5 < 2x+1 AND 2x+1 < 5. These can be combined into the form -5 < 2x+1 < 5 and solved to get your subsequent result. Subtracting 1 from all expressions gives us -6 < 2x < 4, then dividing through by 2 we get -3 < x < 2. ** STUDENT QUESTION: I answered x < 2 and x > -3. Do I need to put it in the -3 < x < 2 form? INSTRUCTOR RESPONSE I wouldn't count it wrong if you didn't, as long as you have the 'and' in there, but it's easier for everyone (especially you, as the student) to see if you use the -3 < x < 2 form. Contrast this with the solution you would have obtained if the inequality had been | 2 x + 1 | > 5. This would be so in either of two cases: 2x + 1 > 5 OR 2x + 1 < -5. Solving these inequalities we would express the solution as x > 2 OR x < -3. If we express solution for the present problem as -3 < x < 2, and the solution to the contrasting problem as x > 2 OR x < -3, it's easier to see at a glance how one solution is fundamentally different than the other. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: describe [-2, 2] using an absolute value inequality YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x< 2 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a The interval [-2, 2] is centered at the midpoint between x=-2 and x=2. You can calculate this midpoint as (-2 + 2) / 2 = 0. It is also clear from a graph of the interval that it is centered at x = 0 The center is at 0. The distance to each endpoint is 2. The interval is | x - center | < distance to endpoints. So the interval here is | x - 0 | < 2, or just | x | < 2. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Describe [-7,-1] using an absolute value inequality. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x+4 < 3 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a the interval is centered at -4 (midpt between -7 and -1). The distance from the center of the interval to -7 is 3, and the distance from the center of the interval to -1 is 3. This translates to the inequality | x - (-4) | < 3, which simplifies to give us | x + 4 | < 3. * &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `q0.2.12 (was 0.2.30) describe (-infinity, 20) U (24, infinity) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The values can be anything except values between 20 and 24. The best way to write this is x-22> 2. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a 22 is at the center of the interval. The endpoints are 2 units from the midpoint, and are not included. Everything that lies more than 2 units from 22 is in one of the intervals, and everything in either of the intervals lies at least 2 units from 22. So the inequality that describes this union of two intervals is | x - 22 | > 2. ** STUDENT COMMENT I sort of understand but I had to read your solution INSTRUCTOR RESPONSE You should graph these two intervals on the number line. Your graph will have a 'hole' in the middle, and you can see that x = 22 is right in the middle of that 'hole'. The 'hole' consists of all numbers which are within 2 units of 22. The two intervals you graphed contain all the numbers which are more than two units from 22. The distance between x and 22 is | x - 22 |. A point is within 2 units of 22 if its distance from 22 is less than 2, and this is the same as saying that | x - 22 | < 2. A point more than 2 units from 22 if its distance from 22 is more than 2, and this is the same as saying that | x - 22 | > 2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: The allowable weight of a male dog of a certain breed, for show purposes, is described by the inequality • abs( (w-57.5)/7.5 ) < 1 Express this as an interval of the number line. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: This dog’s allowable weight range is from 50 lbs to 65 lbs. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a The inequality is translated as -1<=(w-57.5)/7.5<=1. Multiplying through by 7.5 we get -7.5<=w-57.5<=7.5 Now add 57.5 to all expressions to get -7.5 + 57.5 <= x <= 7.5 + 57.5 or 50 < x < 65, which tells you that the dogs weigh between 50 and 65 pounds. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: Stock price is predicted to lie within 2 of 33 1/8. What absolute value inequality or inequalities correspond(s) to this prediction? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Absval(S-33 1/8) <= 2 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a this statement says that the 'distance' between a stock price and 33 1/8 must not be more than 2, so this distance is <= 2 The distance between a price p and 33 1/8 is | p - 33 1/8 |. The desired inequality is therefore | p = 33 1/8 | < = 2. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 " end document Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " end document Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&! " end document Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!#*&!