Query 9

#$&*

course MTH 271

3/4 9:30

009. `query 9*********************************************

Question: `q **** Query problem 1.4.06 diff quotient for x^2-x+1 **** What is the simplified form of the difference quotient for x^2-x+1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The difference quotient is [f(x+ cx) - f(x)]/ cx.

Using it for this function:

[(x + cx)^2 - (x +cx) + 1] - (x^2 -x +1) / cx → [(x^2 + 2x(cx) + cx^2)-x^2 + x - 1] - (x^2 - x +1)/ cx → (cx^2 + 2x(cx) - cx)/ cx → cx + 2x - 1

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The difference quotient would be

[ f(x+`dx) - f(x) ] / `dx =

[ (x+`dx)^2 - (x+`dx) + 1 - (x^2 - x + 1) ] / `dx. Expanding the squared term, etc., this is

[ x^2 + 2 x `dx + `dx^2 - x - `dx + 1 - x^2 + x - 1 ] / `dx, which simplifies further to

}[ 2 x `dx - `dx + `dx^2 ] / `dx, then dividing by the `dx we get

2 x - 1 + `dx.

For x = 2 this simplifies to 2 * 2 - 1 + `dx = 3 + `dx. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): Originally, I forgot to carry the second half of the first part of the quotient across after squaring the (x + cx). After figuring out this algebra mistake, everything made perfect sense.

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `q1.4.40 (38)(was 1.4.34 f+g, f*g, f/g, f(g), g(f) for f=x/(x+1) and g=x^3

the requested functions and the domain and range of each.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

For f+g: (x/x+1) + x^3 → x + (x^3(x+1))/ x+1 → x^4 + x^3 + x/ x+1

For f*g: (x/x+1) * x^3 → x^4/ (x+1)

For f/g: x/(x + 1) / x^3 → x/x+1 * 1/x^3 → x/x^3 * (x+1) → x/ x^4 + x^3 → 1/ x^3 + x^2

For f(g): x^3/(x+1)^3

For g(f): (x/ x+1)^3 → x^3/ (x+1)^3

The domain for all of these expressions is that x can equal anything other than -1. For f/g, x cannot equal 0 either.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a (f+g)(x) = x / (x + 1) + x^3 = (x^4 + x^3 + x) / (x + 1). Domain: x can be any real number except -1.

(f * g)(x) = x^3 * x / (x+1) = x^4 / (x+1). Domain: x can be any real number except -1.

(f / g)(x) = [ x / (x+1) ] / x^3 = 1 / [x^2(x+1)] = 1 / (x^3 + x^2), Domain: x can be any real number except -1 or 0

f(g(x)) = g(x) / (g(x) + 1) = x^3 / (x^3 + 1). Domain: x can be any real number except -1

g(f(x)) = (f(x))^3 = (x / (x+1) )^3 = x^3 / (x+1)^3. Domain: x can be any real number except -1 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `q 1.4.66 (was 1.4.60 graphs of |x|+3, -.5|x|, |x-2|, |x+1|-1, 2|x| from graph of |x|

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

|x|+3: Same shape, raised 3 units.

-.5|x|: Has a more “squashed” shape; it’s slope increases more gradually.

|x-2|: This is moved to the right two units.

|x+1|-1: Moved left one unit, and down one unit.

2|x|: This graph is the same, however it has a more dramatic slope.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The graph of y = | x | exists in quadrants 1 and 2 and has a 'v' shape with the point of the v at the origin.

It follows that:

The graph of | x |+3, which is shifted 3 units vertically from that of | x |, has a 'v' shape with the point of the v at (0,3).

The graph of -.5 | x |, which is stretched by factor -.5 relative to that of | x |, has an inverted 'v' shape with the point of the v at (0,0), with the 'v' extending downward and having half the (negative) slope of the graph of | x |.

The graph of | x-2 |, which is shifted 2 units horizontally from that of |x |, has a 'v' shape with the point of the v at (2, 0).

The graph of | x+1 |-1, which is shifted -1 unit vertically and -1 unit horizontally from that of | x |, has a 'v' shape with the point of the v at (-1, -1).

The graph of 2 |x |, which is stretched by factor 2 relative to that of | x |, has a 'v' shape with the point of the v at (0,0), with the 'v' extending upward and having double slope of the graph of | x |.

|x-2| shifts by +2 units because x has to be 2 greater to give you the same results for |x-2| as you got for |x|.

This also makes sense because if you make a table of y vs. x you find that the y values for |x| must be shifted +2 units in the positive direction to get the y values for |x-2|; this occurs for the same reason given above

For y = |x+1| - 1 the leftward 1-unit shift is because you need to use a lesser value of x to get the same thing for |x+1| that you got for |x|. The vertical -1 is because subtracting 1 shifts y downward by 1 unit **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `q1.4.71 (was 1.4.64 find x(p) from p(x) = 14.75/(1+.01x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To obtain an inverse, you just switch values and solve:

y = 14.75/ (1 +.01x) → x = 14.75/ (1 + 0.01y) → (1475 - 100p) /p = x(p)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a p = 14.75 / (1 + .01 x). Multiply both sides by 1 + .01 x to get

(1 + .01 x) * p = 14.75. Divide both sides by p to get

1 + .01 x = 14.75 / p. Subtract 1 from both sides to get

1 x = 14.75 / p - 1. Multiply both sides by 100 to get

= 1475 / p - 100. Put the right-hand side over common denominator p:

= (1475 - 100 p) / p.

If p = 10 then x = (1475 - 100 p) / p = (1475 - 100 * 10) / 10 = 475 / 10 = 47.5 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qWhat is the x as a function of p, and how many units are sold when the price is $10?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

When p= 10, then (1475 - 100p) /p = x(p) → (1475 - 100*10)/ 10 → 475/ 10 → 47.5 units.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a If p = 10 then x = (1475 - 100 p) / p = (1475 - 100 * 10) / 10 = 475 / 10 = 47.5 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: 3

"

end document

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

end document

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Very good responses. Let me know if you have questions. &#