#$&* course Mth 163 1-31-13 11:44 006. `query 6
.............................................
Given Solution: ** STUDENT RESPONSE: Linear is y=mx+b Quadratic is y=ax^2 + bx +c Exponential is y= A*2^ (kx)+c Power = A (x-h)^p+c INSTRUCTOR COMMENTS: These are the generalized forms. The basic functions are y = x, y = x^2, y = 2^x and y = x^p. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `qFor a function f(x), what is the significance of the function A f(x-h) + k and how does its graph compare to that of f(x)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The original f(x) is stretched vertically by a factor of A, moved horizontally by a factor of h to the right, and moved vertically by a factor of k to make the new graph. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT RESPONSE: A designates the x strectch factor while h affects a y shift & k affects an x shift INSTRUCTOR COMMENTS: k is the y shift for a simple enough reason -- if you add k to the y value it raises the graph by k units. h is the x shift. The reason isn't quite as simple, but not that hard to understand. It's because when x is replaced by x - h the y values on the table shift 'forward' by h units. A is a multiplier. When all y values are multiplied by A that moves them all A times as far from the x axis, which is what causes the stretch. Thus A f(x-h) + k is obtained from f(x) by vertical stretch A, horizontal shift h and vertical shift k. The two aren't the same, but of course they're closely related. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `q query introduction to rates and slopes, problem 1 ave vel for function depth(t) = .02t^2 - 5t + 150 give the average rate of depth change with respect to clock time from t = 20 to t = 40 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: .02x^2-5x+150 (20,58) (40,-18) Using y2-y1 over x2-x1 slope = -3.8 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** depth(20) = .02(20^2) - 5(20) + 150 = 58 depth(40) = .02(40^2) - 5(40) + 150 = -18 change in depth = depth(40) - depth(20) = -18 - 58 = -76 change in clock time = 40 - 20 = 20. Ave rate of depth change with respect to clock time = change in depth / change in clock time = -76 / 20 = -3.8 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `qWhat is the average rate of depth change with respect to clock time from t = 60 to t = 80? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (60,-78) and (80, -122) -122—78 over 80-60 or -44/20 or -11/5 or -2.2 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** depth(60) = .02(60^2) - 5(60) + 150 = -78 depth(80) = .02(80^2) - 5(80) + 150 = -122 change in depth = depth(80) - depth(60) = -122 - (-78) = -44 change in clock time = 40 - 20 = 20. Ave rate of depth change with respect to clock time = change in depth / change in clock time = -44 / 20 = -2.2 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `qdescribe your graph of y = .02t^2 - 5t + 150 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Parabola Vertex at (125, -152.5) Roots at (34.861,0) and (215.139,0) confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The graph is a parabola. y = .02t^2 - 5t + 150 has vertex at x = -b / (2a) = -(-5) / (2 * .02) = 125, at which point y = .02 (125^2) - 5(125) + 150 = -162.5. The graph opens upward, intercepting the x axis at about t = 35 and t = 215. Up to t = 125 the graph is decreasing at a decreasing rate. That is, it's decreasing but the slopes, which are negative, are increasing toward 0.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: `qdescribe the pattern to the depth change rates YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The slopes are -3.8, -3, and -2.2, so the rate increases at an interval of +.8 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** Rates are -3.8, -3 and -2.2 for the three intervals (20,40), (40,60) and (60,80). For each interval of `dt = 20 the rate changes by +.8. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `qquery problem 2. ave rates at midpoint times what is the average rate of depth change with respect to clock time for the 1-second time interval centered at the 50 sec midpoint? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The place on the graph that it is a one second interval is between 49.5 and 50.5 Using the formula for slope we get a rate of -3 confidence rating #$&*:: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The 1-sec interval centered at t = 50 is 49.5 < t < 50.5. For depth(t) = .02t^2 - 5t + 150 we have ave rate = [depth(50.5) - depth(49.5)]/(50.5 - 49.5) = -3 / 1 = -3. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `qwhat is the average rate of change with respect to clock time for the six-second time interval centered at the midpoint. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The part of the graph with a 6 second interval is between 47 and 53. Using the slope formula we get the rate to be -3. confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The 6-sec interval centered at t = 50 is 47 < t < 53. For depth(t) = .02t^2 - 5t + 150 we have ave rate = [depth(53) - depth(47)]/(53 - 47) = -18 / 6 = -3. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `qWhat did you observe about your two results? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The rates of change were the same and they were both centered at 50. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The two rates match each other, and they also match the average rate for the interval 40 < t < 60, which is also centered at t = 50. For a quadratic function, and only for a quadratic function, the rate is the same for all intervals having the same midpoint. This is a property unique to quadratic functions. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `qquery problem 3. ave rates at midpt times for temperature function Temperature(t) = 75(2^(-.05t)) + 25. What is the average rate of temperature change with respect to clock time for the 1-second time interval centered at the 50 sec midpoint? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: When x is 50.5 y is 38.03048331 When x is 49.5 y is 38.49000231 The difference between these two is -0.4595190014 and the clock time change is 1 second. Using the equation for slope the rate of change is -.4595 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: f(50.5) = 38.03048331 deg f(49.5) = 38.49000231 deg The change is -0.4595190014 deg. The change in clock time is 1 second. So the average rate is • ave rate = change in temperature / change in clock time = -.4595 deg / (1 sec ) = -.4595 deg/sec. STUDENT RESPONSE: .46 degrees/sec INSTRUCTOR COMMENT: More precisely -.4595 deg/sec, and this does not agree exactly with the result for the 6-second interval. Remember that you need to look at enough significant figures to see if there is a difference between apparently identical results.** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `qwhat is the average rate of change for the six-second time interval centered at the midpoint. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: -.4603 degrees per second confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: STUDENT RESPONSE: .46 degrees/minute INSTRUCTOR COMMENT: The 1- and 6-second results might possibly be the same to two significant figures, but they aren't the same. Be sure to recalculate these according to my notes above and verify this for yourself. The average rate for the 6-second interval is -.4603 deg/sec. It differs from the average rate -.4595 deg/min, calculated over the 1-second interval, by more than -.0008 deg/sec. This differs from the behavior of the quadratic. For a quadratic that the results for all intervals centered at the same point will all agree. This is not the case for the present function, which is exponential. Exact agreement is a characteristic of quadratic functions, and of no other type. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: ok "" " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: "" " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!