#$&* course Mth 163 2-21-13 2:27 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: If y2 = k x2^2 and y1 = k x1^2, then y2 / y1 = (k x2^2) / ( k x1^2). Since k / k = 1 this is the same as y2 / y1 = x2^2 / x1^2, which is the same as y2 / y1 = (x2 / x1)^2. In words this tells us if y to is proportional to the square of x, then the ratio of y2 to y1 is the same as the square of the ratio of x2 to x1. Now if (x2 / x1) = 7, we see that y2 / y1 = (x2 / x1)^2 = 7^2 = 49. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok ------------------------------------------------ Self-critique rating: ok ********************************************* Question: `q002. If we know that y = k x^3, then if (x2/x1) = 7, what is (y2/y1)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Y2/y1=kx2^3/kx1^3 Y2/y1=x2^3/x1^3 Y2/y1=(x2-x1)^3 Y2/y1=7^3 343= y2/y1 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If y2 = k x2^3 and y1 = k x1^3, then y2 / y1 = (k x2^3) / ( k x1^3). Since k / k = 1 this is the same as y2 / y1 = x2^3 / x1^3, which is the same as y2 / y1 = (x2 / x1)^3. In words this tells us if y to is proportional to the cube of x, then the ratio of y2 to y1 is the same as the cube of the ratio of x2 to x1. Now if (x2 / x1) = 7, we see that y2 / y1 = (x2 / x1)^3 = 7^3 = 343. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating: ********************************************* Question: `q003. If we know that y = k x^-2, then if (x2/x1) = 64, what is (y2/y1)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Y=kx^-2 Y2/y1=(kx2^-2)/(kx1^-2) Y2/y1=x2^-2/x1^-2 Y2/y1=(x2/x1)^-2 Y2/y1=(1/64)^2 Y2/y1=1/4096 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If y2 = k x2^-2 and y1 = k x1^-2, then y2 / y1 = (k x2^-2) / ( k x1^-2). Since k / k = 1 this is the same as y2 / y1 = x2^-2 / x1^-2, which is the same as y2 / y1 = (x2 / x1)^-2, which is the same as 1 / (x2 / x1)^2, which gives us (x1 / x2)^2. So if y = k x^-2, then (y2 / y1) = (x1 / x2)^2.( In words this tells us if y to is inversely proportional to the square of x, then the ratio of y2 to y1 is the same as the square of the ratio of x1 to x2 (note that this is a reciprocal ratio). Now if (x2 / x1) = 64, we see that y2 / y1 = (x1 / x2)^2 = (1/64)^2 = 1/ 4096. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating: ok ********************************************* Question: `q004. If y = k / x and if y = 4 when x = 2, what is the value of y when x = 8? What is the ratio of the new value of y to the original? What is the ratio of the new value of x to the original? If y = k / x and if (x2 / x1) = 3, then what is the value of (y2 / y1)? In general how is the ratio y2 / y1 related to the ratio x2 / x1? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 4=k/2 8=k Y=8/8 Y=1 1:4 8:2 Y2/y1=k/3 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ------------------------------------------------ Self-critique rating: ok "" " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: