#$&* course Mth 277 9/17 1:30 am If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: v dot w = 4 * 3 + 1 * 2 = 12 + 2 = 14. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique rating:3 ********************************************* Question: Determine whether v = 5i - 5j + 5k and w = 8i - 10j -2k are orthogonal. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: judging from google Orthogonal means perpendicular, which means a dot product of 0. ((5*8) + (-5*-10) + (5*-2)) = (40 + 50 - 10) = 80 which isn’t 0, which means they are not orthogonal. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Two vectors are orthogonal if the angle between them is 90 deg, i.e., if and onlye if their dot product is zero. The dot product of these vectors is 5 * 8 - 5 * (-8) + 5 * (-2) = 40 + 40 - 10 = 70. They are not orthogonal. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating:3 ********************************************* Question: Find the angle between v = 2i +3 k and w = -j + 4k. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: v dot w = ||v||*||w||cos(theta). v dot w = 12, ||v|| = sqrt.13, ||w|| = sqrt. 17. Theta = cos^-1(12/ (sqrt. 13 * sqrt. 17). Theta = cos^-1(.80). Theta = 37 degrees. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Since v dot w = || v || || w || cos(theta) we have theta = cos^-1 ( v dot w ) || v || || w || = cos^-1 ( 10 / (sqrt(13) * sqrt( 17) ) = cos^-1 (.67) = 48 degrees, approx., or roughly.8 radians. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I see that you have v dot w is 12. but when you said v = 2i + 3k and w = - j + 4 k which translates to ( 2, 0, 3 ) dot ( 0, -1, 4 ) 2*0 = 0 0*-1 = 0 3*4=12 therefore dot product should be 12? either way I understand the concept. ------------------------------------------------ Self-critique rating:3
.............................................
Given Solution: Suppose a i + b j + c k is orthogonal to both. Then the dot product of this vector with each of the given vectors is zero, and we have a + 2 b - 2 c = 0 a + b - 2 c = 0 Subtracting the second equation from the first we get b = 0. With this value of b both our first and our second equation become a - 2 c = 0 so that a = 2 c. Any vector of the form 2c i + c k is therefore orthogonal to our two vectors. Any such vector has magnitude sqrt( (2 c)^2 + c^2) = sqrt( 5 c^2) = sqrt(5) | c |. If c is positive then | c | = c and our vector is (2 c i + c k ) / (sqrt(5) c) = 2 sqrt(5) / 5 i + sqrt(5) / 5 k. If c is negative then | c | = - c and our vector will be (2 c i + c k ) / (- sqrt(5) c) = - 2 sqrt(5) / 5 i - sqrt(5) / 5 k. Our two solution vectors are equal and opposite. Each is a unit vector perpendicular to the two given vectors. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Got the answer but it took me a while to figure out to make a (+) solution for sqrt(5) and ( - ) solution ------------------------------------------------ Self-critique rating:3 ********************************************* Question: Let v = i - j + 4k and w = -i + 3j + 2k. Find cos(theta). Find s such that v is orthogonal to sv - w. Also find t such that v - tw is orthogonal to w YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: cos(theta) = v dot w / ( || v || || w ||) = 4 / (sqrt(18) sqrt(14) ) = 4 / (15.87) ) = 75.4 degres. v dot (sv-w) = 0 after much dot producting on paper i get 18s = - 4 because when you have the equation s-1 + s-3 + 16s + 8 = 0 you have 18s -1 -3 is -4 then + 8 is +4. so you are left with 18s + 4 = 0. then 18s = -4. s = -4/18 is there a sign error? confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: cos(theta) = v dot w / ( || v || || w ||) = 4 / (sqrt(18) sqrt(14) ) = 4 / (12 sqrt(7) ). The condition v orthogonal to s v - w is v dot (s v - w ) = 0 (i - j + 4 k ) dot ( (s - 1) i + (-s + 3) j + (4 s + 2) k ) = 0 which becomes s - 1 + s - 3 + 16 s + 8 = 0 so that 18 s = 4 and s = 4 / 18. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I was very fustrated with the dot product of v dot sv-w because i kept getting sign errors with multiplication with my (s-1) dot 1 or something to give an example. and I keep getting the 18s = -4 . somehow i'm nearly positive thats how it is. if not, i'm even more frustrated with sign errors ------------------------------------------------ Self-critique rating:3
.............................................
Given Solution: The work is F dot `ds = ( (6/11)i - (2 / 11) j + (6 / 11) k ) dot (-7 i - 14 j - 7 k ) = -42/11 + 28 / 11 - 42 /11 = 28 / 11. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating:3 " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!