#$&* course Mth 277 9/20 9 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Identify the quadric surface given by the equation 8z^2 = (1/8) + (x^2)/9 + (y^2). Describe the traces in planes parallel to the coordinate planes (and sketch the graph). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: the general plane x = c, are just vertical planes parallel to the y-z plane. or the x-z plane. setting the function equal to 1 we get 1= -8x^2/9 - 8y^2 + 64z^2. all of the planes are ^2 which would mean this is an elipse. with the plane yz, x is parralell. so for the yz plane, we sub x=0 in and we have 1= -8y^2 +64z^2. hyperboloid of two sheets confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Describe the quadric surface given by the equation ((x-3)^2)/2 - ((y-1)^2)/4 - (z^2-2)/9 = 4. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: I'm hoping you meant to put the square in the (z^2-2)/9 on the outside of the parenthasis, i'm going to work the problem like that. if so we can manipulate the equation to say ((y-1)^2)/4^2 + (z^2-2)/6^2 - ((x-3)^2)/sqrt(8) ^2 = -1 which is a hyperboid of two sheets confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Describe the curve intersection of the two quadric surfaces 4z = (y^2)/9 - (x^2)/16 and (x^2)/4 + 2(y^2) - 4(z^2)/3 = 1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: first solution can be written as z = y^2/6^2 - x^2/8^2 which is a hyperbolic paraboloid or ""saddle surface"" second solution is already written as a hyperboloid of one sheet. the positive z x and y direction of the second equation will ""fill in"" the blank emptiness of the saddle surface..making the positive z direction with both + and - y and x direction filled in. however the -z and both +- x and y direction will be doubly filled in because they will overlap throughout eachother indefinetely. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ???????????? the only problem i have is graphing these equations. I will come to you later for some tips and ways to get started. ------------------------------------------------ Self-critique rating: