#$&* course Mth 277 10/7 12 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ??????????????????????? I cant help but think that the i component in the F '' (t) can be reduced ------------------------------------------------ Self-critique rating: ********************************************* Question: Given the position vector of a particle R(t) = (cos t)i + tj + (4 sin t)k, find the particle's velocity and acceleration vectors and then find the speed and direction of the particle at t = pi/2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: to find velocity, take first derivitave. R'(t) = -sin(pi/2) i + j + (4cos(pi/2) ) = -1 i + 1 j + 0 to get acceleration, take second derivative R''(t) = -cos(pi/2)i + 0j - 4sin(pi/2)k = 0i + 0j - 4k which implies it is decelerating in the negative k direction of 4 units / s^2 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ??????????? are my order of opperations correct finding ln t and taking derivative? or do I even take the derivative in the first place? if not, I can easly do this
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the velocity and position vectors given the acceleration vector `A(t) = 4(t^2)i - 2 sqrt(t) j + 5(e^3t)k, initial position R(0) = 2i + j -3k and initial velocity v(0) = 4i + j + 2k. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Long problem, not going to write out all algebra because it took whole paper. to find vel vector, take the first integral of the A(t) vector, to get ( (4t^3)/3 +c'1)i - ( (4t^3/2)/3 +c'2)j + ( 5e^3(t) / 3 + c'3)k. set the v(0) vector = to this vector to solve for the c1, c2, and c3 solve for constants and find that the v vector is (4i + j + 11/3k) now to get the position vector, take the 2nd integral of the A(t) vector and set that = to the R(0) vector and solve for those constants, now we have a lot of constants 2nd integral for A(t) vector is; (1/3 t^4 + c'1t)i + (8/15t^(5/2) +c'2t)j + (5e^(3t)/9 + c'3t)k + c'1i + c'2j + c'3k set R(0) = d^2/dt A(t) and seperate i j and k components and set the t = 0 to solve for the new constants, these constants are the position vector, once I solved for the constants in the new position vector, i now have R(t) = (2i + j - 27/5k)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: F(t) = e^(-kt)i + e^(kt)k. Show that F and F'' are parallel. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: if they are parallel, they will be multiples of eachother. when you integrate e^(-kt) with respect to t, you get the same thing, so yes, they are multiples of eachother, and they are parallel
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!