#$&* course Mth 277 10/18 10pm query_10_4*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find T(t) and N(t) when R(t) = (e^-2t cost)i + (e^-2t sint )j + e^-2t. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: T(t) = R'(t) / ||R'(t)|| N(t) = T'(t) / ||T'(t)|| so find derivative and magnitudes of them to get the normal and tangential vectors of R(t) OK i found the derivative of R and magnitude to find T(t). this is messy. I can get the T(t) but to get N(t) you take derivative of a already messy function, I'm only going to type the i component to show you what i dont understand. T'(t) { ( -e^(2t) sint - 2cost*e^(2t) ) / ( e^(2t) )^2 } (i) / sqrt{ [ ( ( -e^(2t) sint - 2cost*e^(2t) ) / ( e^(2t) )^2 ] ^2 } how....in the heck do I take the derivative of that? by squaring the inner terms then setting that in parenthasis to ^(1/2) ? then do the quotient rule from there? ( d/dx [u/v] = vdu - udv / v^2 ? this calculation seems very very large and messy derivatives I've gone through simplifying this equation and separating the components and I see that this is posible, but still obviously messy.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the curvature of the plane curve y = sin (-3x) at x = pi/2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: equation for curavture of a planar curve is k = | f''(x) | / (1 + [ f'(x) ] ^2 ) ^(3/2) 9sin(3pi/2) / (1 + (-3cos(3pi/2)^2)^(3/2) = 9/1 or 9 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating: ********************************************* Question: Let C be the curve given by R(t) = (1-cos t)i + (t-sin t)j + (4sin(t/2))k Find the unit tangent vector T(t) to C Find dT/ds and the curvature k(t) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: OK on the unit tangent vector T(t) [ just find R'(t) / || R'(t) || ] k(t) = || T'(t) || / || R'(t) || confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the maximum curvature for the curve y = e^3x. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: take the derivative and 2nd to get information for the k= | f""'(x) | / (1+[f'(x)]^2)^(3/2) and you get that k = 9e^(3x) / (1+27e^(9x)) take the derivative of this and set it equal to 0 to solve for the maximum curvature and get that e^x = 0 and 1/3^(4/9) confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique rating: ********************************************* Question: YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: If T and N are the unit tangent and normal vectors on the trajectory of a moving body, we can define B = T X N to be the unit binormal vector. A coordinate system with three planes can be made at each point with these vectors since they are mutually orthogonal. Show that T is orthogonal to dB/ds (Hint: Differentiate B dot T) Show that B is orthogonal to dB/ds (Hint: Differentiate B dot B) Show that dB/ds = -(tau)N for some constant tau. (We call the constant tau the torsion of the trajectory) **Prove the Frenet-Serret formulas: (dT/ds = kN, dN/ds = -kT + tauB, dB/ds = -tauN). Where k is the curvature and tau = tau(s) is a scalar function. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: N = A'n T = A't = B dot T = 0 means that T is orthogonal to B B dot B = 0 means it is just a multiple of B. ( i think this was supposed to be B dot N ) This is very difficult and I dont even know where to start, i've tried this on multiple peices of paper and dont need to keep getting bogged down on this one question confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ________________________________________ #$&*