#$&* course Mth 277 10/30 5 Question: `q001. Find f_x and f_y when f(x,y) = xy^4*arctan(y).YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
.............................................
Given Solution: f_x = y^4 arctan(y) f_y = x * ( (y^4) ' arcTan(y) - y^4 * (arcTan(y)) ' ) = x * 4 y^3 - y^4 * 1 / (1 + y^2) = y^3 ( 4 x - (y / (1 + y^2) ). Simplification should be continued until the result is a single fraction with numerator y^3 ( 4 x + 4 x y^2 - y) and denominator (1 + y^2). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): shouldn't the product rule be (f*g) = f ' * g + f * g' ??? ------------------------------------------------ Self-critique rating:3
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): SIMPLE. OK ------------------------------------------------ Self-critique rating: ********************************************* Question: `q003. Let f(x,y) = (x^2 + y^2)/(xy), P = (2, -1, -5/2) Find the slope of the tangent line of the graph of f parallel to the xz-plane at the point P. Find the slope of the tangent line of the graph of f parallel to the yz-plane at the point P. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: worked on paper. found an error in your derivative, just a typo OK confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: In a plane parallel to the xz plane, y is constant and z is a function of x only. If y = -1, then the function becomes -(x^2 + 1) / x, and its derivative is -1 + 1 / x^2. At x = 2 the slope is therefore -3/4. Alternatively, f_x = 1/y - y / x^2. At P = (2, -1, -5/2) we get f_x = -1 + 1/2^2 = -3/4. Analogous analysis of the slope in a plane parallel to the yz plane indicates a slope at (2, -1, -5/2) of 2 - 1/2 = 3/2. Thus the vectors i - 3/4 k and j + 3/2 k are tangent to the plane at (2, -1, -5/2). We can calculate a cross product to get a normal vector, and knowing the coordinates of P we can then easily find the equation of the tangent plane. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): derivative should be (-1x^2 +1) / x^2 to get -3/4 ?????????????the analagous analysis of the slope doesn't make sense to me yet. I dont see how you can say 2- 1/2 = 3/2 from the point (2,-1,-5/2) where does the 2-1/2 come from??? ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: For the first function f_x = -2 x sin(y x^2) so f_xy = -2 x^3 cos(y x^2) f_y = -x^2 sin(y x^2) and f_yx = -2 x^3 cos(y x^2) &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): It would be more clear if you said f_y = this...so f_y_x = that. so you would know that its the partial derivative of x in the paritial derivative of y of f function. like d/dy f(x,y) = ANSWER. so d/dy * ANSWER = other answer ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: For the first function z_t = (sin(2t)) ' sin( 2 c x) = 2 cos (2 t) sin( 2 c x), and z_tt = -4 sin(2 t) sin(2 c x) z_x = 2 c sin(2 t) * cos(2 c x) and z_xx = -4 c^2 sin(2 t) sin(2 c x). The two second partials are identical except for the c^2 in z_xx. So we see that z_xx = z_tt * c^2. This is close, but not quite, of the same form as the wave equation. However the wave equation has the c^2 on the z_xx term, not the z_tt term. Had the function been z = sin(2 x) * sin( 2 c t), it would have satisfied the wave equation. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I understand the partial deravation behind this, but i'm not sure where you said ""we can see that z_xx = z_tt *c^2. because i see z_tt / c^2 ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: