q a 25

course phy 121

This qa is in two parts. I did part of it 3 days ago and part of it today.

????_?P?p?~w???W????assignment #025025. More Forces

Physics II

10-16-2008

......!!!!!!!!...................................

21:48:54

`q001. Note that this assignment contains 5 questions.

. A pendulum consists of a 150 g mass suspended from a light string. Another light string is attached to the mass, which is then pulled back from its equilibrium position by that string until the first string makes an angle of 15 degrees with vertical. The second string remains horizontal.

Let the x axis be horizontal and the y axis vertical. Assume that the mass is pulled in the positive x direction. If T stands for the tension in the pendulum string, then in terms of the variable T what are the x and y components of the tension?

......!!!!!!!!...................................

RESPONSE -->

Fgrav = m*g = .150kg * -9.8m/s^2 = -1.47

Fn = opposite of F grav = 1.47

x comp = 1.47 (cos 15 degrees) = 1.42

y comp = 1.47 (sin 15 degrees) = .38

confidence assessment: 0

.................................................

......!!!!!!!!...................................

21:51:55

The pendulum string makes an angle of 15 degrees with vertical. Since we have assumed that the pendulum is pulled in the positive x direction, the direction of the tension in the string will be upward and to the left at an angle of 15 degrees with vertical. The tension force will therefore be directed at 90 degrees + 15 degrees = 105 degrees as measured counterclockwise from the positive x axis.

The tension will therefore have x component T cos(105 degrees) and y component T sin(105 degrees).

......!!!!!!!!...................................

RESPONSE -->

I see where I went wrong with the direction of the string. I knew what I did didn't seem right.

Wouldn't the T of the string just be the opposite of the force of gravity? (don't ask why I labeled it ""n"" earlier - I don't know why)

self critique assessment: 2

The direction of the string determines the direction of its pull. The string is not vertical so its pull cannot be vertical. The gravitational force is vertical and cannot be balanced by a non-vertical force. However, as in this case, a non-vertical force can have a component that balances gravity. This entails a non-vertical component to the force, which if countered must be countered by something besides the gravitational force, and which if not countered results in an acceleration in the direction perpendicular to the gravitational force. It is then force, the horizontal component of the tension, that accelerates the pendulum.

................................................

......!!!!!!!!...................................

21:53:57

`q002. Continuing the preceding problem, we see that we have a vertical force of T sin(105 deg) from the tension. What other vertical force(s) act on the mass? What is the magnitude and direction of each of these forces? What therefore must be the magnitude of T sin(105 deg).

......!!!!!!!!...................................

RESPONSE -->

The other vertical force is gravity, pulling in the opposite direction, so I believe the magnitude of T must be equal and opposite to the force of gravity which is .150kg * 9.8m/s^2 = 1.47N

confidence assessment: 1

.................................................

......!!!!!!!!...................................

21:57:03

The only other vertical force acting on the mass will be the gravitational force, which is .150 kg * 9.8 meters/second ^ 2 = 1.47 Newtons. The direction of this force is vertically downward.

Since the mass is in equilibrium, i.e., not accelerating, the net force in the y direction must be zero. Thus

T sin(105 deg) - 1.47 Newtons = 0 and T sin(105 deg) = 1.47 Newtons.

......!!!!!!!!...................................

RESPONSE -->

I was right about the only other force being gravity, but I don't understand why T sin (105deg) - 1.4N = 0.

Why is the 1.4N subtracted from T sin (105deg)?

Why isn't T 1.47?

self critique assessment: 2

In the vertical direction we have two forces on the object, one being the vertical component of the tension, T sin(105 deg), and the other being the 1.47 N weight of the object (i.e., the force exerted by gravity on the object).

It's T sin(105 deg) that is therefore equal to 1.47 N, not T.

.................................................

......!!!!!!!!...................................

21:58:17

`q003. Continuing the preceding two problems, what therefore must be the tension T, and how much tension is there in the horizontal string which is holding the pendulum back?

......!!!!!!!!...................................

RESPONSE -->

I still think the tension is 1.47N.

I think the tension of the horizontal string has to be equal, so 1.47N

confidence assessment: 1

The horizontal string cannot exert a force that balances a vertical force. The tension in the horizontal string is the force which is required to balance the horizontal component of the tension in the pendulum string.

.................................................

......!!!!!!!!...................................

22:05:47

If T sin(105 deg) = 1.47 Newtons then T = 1.47 Newtons / (sin(15 deg)) = 1.47 Newtons/.97 = 1.52 Newtons.

Thus the horizontal component of the tension will be T cos(105 deg) = 1.52 Newtons * cos(105 deg) = 1.52 Newtons * (-.26) = -.39 Newtons, approximately.

Since the mass is in equilibrium, the net force in the x direction must be zero. The only forces acting in the x direction are the x component of the tension, to which we just found to be -.39 Newtons, and the tension in the second string, which for the moment will call T2. Thus

T2 + (-.39 N) = 0 and T2 = .39 N.

That is, the tension in the second string is .39 Newtons.

STUDENT COMMENT: I'm really confused now. If we started out with a .15 kg mass that is equal to 1.47 Newtons. How did we create more weight to get 1.52 Newtons? Is the horizontal string not helping support the weight or is it puling on the weight adding more force?

INSTRUCTOR RESPONSE: A horizontal force has no vertical component and cannot help to support an object against a vertical force.

The vertical component of the tension is what supports the weight, so the tension has to be a bit greater than the weight.

The tension in the string is resisting the downward weight vector as well as the horizontal pull, so by the Pythagorean Theorem it must be greater than either.

......!!!!!!!!...................................

RESPONSE -->

I'm lost

self critique assessment: 0

.................................................

???????????L??

assignment #025

025. More Forces

Physics II

10-16-2008

......!!!!!!!!...................................

22:11:26

`q001. Note that this assignment contains 5 questions.

. A pendulum consists of a 150 g mass suspended from a light string. Another light string is attached to the mass, which is then pulled back from its equilibrium position by that string until the first string makes an angle of 15 degrees with vertical. The second string remains horizontal.

Let the x axis be horizontal and the y axis vertical. Assume that the mass is pulled in the positive x direction. If T stands for the tension in the pendulum string, then in terms of the variable T what are the x and y components of the tension?

......!!!!!!!!...................................

RESPONSE -->

confidence assessment:

.................................................

......!!!!!!!!...................................

22:11:39

The pendulum string makes an angle of 15 degrees with vertical. Since we have assumed that the pendulum is pulled in the positive x direction, the direction of the tension in the string will be upward and to the left at an angle of 15 degrees with vertical. The tension force will therefore be directed at 90 degrees + 15 degrees = 105 degrees as measured counterclockwise from the positive x axis.

The tension will therefore have x component T cos(105 degrees) and y component T sin(105 degrees).

......!!!!!!!!...................................

RESPONSE -->

self critique assessment:

.................................................

......!!!!!!!!...................................

22:11:48

`q002. Continuing the preceding problem, we see that we have a vertical force of T sin(105 deg) from the tension. What other vertical force(s) act on the mass? What is the magnitude and direction of each of these forces? What therefore must be the magnitude of T sin(105 deg).

......!!!!!!!!...................................

RESPONSE -->

confidence assessment:

.................................................

......!!!!!!!!...................................

22:12:27

The only other vertical force acting on the mass will be the gravitational force, which is .150 kg * 9.8 meters/second ^ 2 = 1.47 Newtons. The direction of this force is vertically downward.

Since the mass is in equilibrium, i.e., not accelerating, the net force in the y direction must be zero. Thus

T sin(105 deg) - 1.47 Newtons = 0 and T sin(105 deg) = 1.47 Newtons.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment:

.................................................

......!!!!!!!!...................................

22:12:36

`q003. Continuing the preceding two problems, what therefore must be the tension T, and how much tension is there in the horizontal string which is holding the pendulum back?

......!!!!!!!!...................................

RESPONSE -->

confidence assessment:

.................................................

......!!!!!!!!...................................

22:17:08

If T sin(105 deg) = 1.47 Newtons then T = 1.47 Newtons / (sin(15 deg)) = 1.47 Newtons/.97 = 1.52 Newtons.

Thus the horizontal component of the tension will be T cos(105 deg) = 1.52 Newtons * cos(105 deg) = 1.52 Newtons * (-.26) = -.39 Newtons, approximately.

Since the mass is in equilibrium, the net force in the x direction must be zero. The only forces acting in the x direction are the x component of the tension, to which we just found to be -.39 Newtons, and the tension in the second string, which for the moment will call T2. Thus

T2 + (-.39 N) = 0 and T2 = .39 N.

That is, the tension in the second string is .39 Newtons.

STUDENT COMMENT: I'm really confused now. If we started out with a .15 kg mass that is equal to 1.47 Newtons. How did we create more weight to get 1.52 Newtons? Is the horizontal string not helping support the weight or is it puling on the weight adding more force?

INSTRUCTOR RESPONSE: A horizontal force has no vertical component and cannot help to support an object against a vertical force.

The vertical component of the tension is what supports the weight, so the tension has to be a bit greater than the weight.

The tension in the string is resisting the downward weight vector as well as the horizontal pull, so by the Pythagorean Theorem it must be greater than either.

......!!!!!!!!...................................

RESPONSE -->

I am having a hard time understanding why T isn't 1.47 and why T sin (105deg) = 1.47.

I think I vauely understnad, but I am too tired to make sure.

self critique assessment: 2

.................................................

??????{\?W???????assignment #025

025. More Forces

Physics II

10-19-2008

......!!!!!!!!...................................

21:22:53

`q001. Note that this assignment contains 5 questions.

. A pendulum consists of a 150 g mass suspended from a light string. Another light string is attached to the mass, which is then pulled back from its equilibrium position by that string until the first string makes an angle of 15 degrees with vertical. The second string remains horizontal.

Let the x axis be horizontal and the y axis vertical. Assume that the mass is pulled in the positive x direction. If T stands for the tension in the pendulum string, then in terms of the variable T what are the x and y components of the tension?

......!!!!!!!!...................................

RESPONSE -->

confidence assessment:

.................................................

......!!!!!!!!...................................

21:23:04

The pendulum string makes an angle of 15 degrees with vertical. Since we have assumed that the pendulum is pulled in the positive x direction, the direction of the tension in the string will be upward and to the left at an angle of 15 degrees with vertical. The tension force will therefore be directed at 90 degrees + 15 degrees = 105 degrees as measured counterclockwise from the positive x axis.

The tension will therefore have x component T cos(105 degrees) and y component T sin(105 degrees).

......!!!!!!!!...................................

RESPONSE -->

self critique assessment:

.................................................

......!!!!!!!!...................................

21:23:10

`q002. Continuing the preceding problem, we see that we have a vertical force of T sin(105 deg) from the tension. What other vertical force(s) act on the mass? What is the magnitude and direction of each of these forces? What therefore must be the magnitude of T sin(105 deg).

......!!!!!!!!...................................

RESPONSE -->

confidence assessment:

.................................................

......!!!!!!!!...................................

21:23:15

The only other vertical force acting on the mass will be the gravitational force, which is .150 kg * 9.8 meters/second ^ 2 = 1.47 Newtons. The direction of this force is vertically downward.

Since the mass is in equilibrium, i.e., not accelerating, the net force in the y direction must be zero. Thus

T sin(105 deg) - 1.47 Newtons = 0 and T sin(105 deg) = 1.47 Newtons.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment:

.................................................

......!!!!!!!!...................................

21:23:20

`q003. Continuing the preceding two problems, what therefore must be the tension T, and how much tension is there in the horizontal string which is holding the pendulum back?

......!!!!!!!!...................................

RESPONSE -->

confidence assessment:

.................................................

......!!!!!!!!...................................

21:23:26

If T sin(105 deg) = 1.47 Newtons then T = 1.47 Newtons / (sin(15 deg)) = 1.47 Newtons/.97 = 1.52 Newtons.

Thus the horizontal component of the tension will be T cos(105 deg) = 1.52 Newtons * cos(105 deg) = 1.52 Newtons * (-.26) = -.39 Newtons, approximately.

Since the mass is in equilibrium, the net force in the x direction must be zero. The only forces acting in the x direction are the x component of the tension, to which we just found to be -.39 Newtons, and the tension in the second string, which for the moment will call T2. Thus

T2 + (-.39 N) = 0 and T2 = .39 N.

That is, the tension in the second string is .39 Newtons.

STUDENT COMMENT: I'm really confused now. If we started out with a .15 kg mass that is equal to 1.47 Newtons. How did we create more weight to get 1.52 Newtons? Is the horizontal string not helping support the weight or is it puling on the weight adding more force?

INSTRUCTOR RESPONSE: A horizontal force has no vertical component and cannot help to support an object against a vertical force.

The vertical component of the tension is what supports the weight, so the tension has to be a bit greater than the weight.

The tension in the string is resisting the downward weight vector as well as the horizontal pull, so by the Pythagorean Theorem it must be greater than either.

......!!!!!!!!...................................

RESPONSE -->

self critique assessment:

.................................................

......!!!!!!!!...................................

21:32:52

`q004. If a 2 kg pendulum is held back at an angle of 20 degrees from vertical by a horizontal force, what is the magnitude of that horizontal force?

......!!!!!!!!...................................

RESPONSE -->

2 kg * 9.8 m/s^2 = 19.6

confidence assessment: 0

.................................................

......!!!!!!!!...................................

21:38:36

At the 20 degree angle the tension in the pendulum string will have a vertical component equal and opposite to the force exerted by gravity. The tension with therefore have a horizontal component. To achieve equilibrium by exerting the horizontal force, this horizontal force must balance the horizontal component of the tension.

We therefore begin by letting T stand for the tension in the pendulum string. We also assumed that the pendulum is displaced in the positive x, so that the direction of the string as measured counterclockwise from the positive x axis will be 90 degrees + 20 degrees = 110 degrees. Thus the x component of the tension will be T cos(110 deg) and the y component of the tension will be T sin(110 deg).

The weight of the 2 kg pendulum is 2 kg * 9.8 meters/second ^ 2 = 19.6 Newtons, directed in the negative vertical direction. Since the pendulum are in equilibrium, the net vertical force is zero:

T sin(110 deg) + (-19.6 N) = 0

This equation is easily solved for the tension: T = 19.6 N / (sin(110 deg) ) = 19.6 N / (.94) = 20.8 Newtons, approximately.

The horizontal component of the tension is therefore T cos(110 deg) = 20.8 N * cos(110 deg) = 20.8 N * (-.34) = -7 N, approx.. To achieve equilibrium, the additional horizontal force needed will be + 7 Newtons.

......!!!!!!!!...................................

RESPONSE -->

The magnitude is 19.6 N right? Then the x and y components are 20.8N and -7N?

The magnitude is T, which is regarded as unknown until we solve for it.

19.6 N is the vertical component of the tension, which is equal to T sin(110 deg). The tension must therefore be > 19.6 N.

Why doesn't T = 19.6N?

I understand why we add 90 + 20 degrees to get 110 degrees, but I don't understand why the -19.6 is added to T sin (110deg), or why the resultant 20.8 is used to find teh -7N.

self critique assessment: 0

My current note and notes on the immediately preceding assignments should help clarify this, but let me know if they don't.

.................................................

......!!!!!!!!...................................

21:45:50

`q005. The 2 kg pendulum in the previous exercise is again pulled back to an angle of 20 degrees with vertical. This time it is held in that position by a chain of negligible mass which makes an angle of 40 degrees above horizontal.

Describe your sketch of the forces acting on the mass of the pendulum.

What must be the tension in the chain?

......!!!!!!!!...................................

RESPONSE -->

I have a mass with three forces pulling on it. One is north and east ( the string of the pendulum). It is at an angle of 20 degrees with vertical. The second force is the chaing which is to the north west. It is at an angle of 40 from horizontal, which is 130 degrees from the positive x axis. The final force is straight down (south) and is the force of gravity pulling on the object. I have no idea what the tension of the chain is.

confidence assessment: 0

.................................................

......!!!!!!!!...................................

21:48:11

The weight of the pendulum is partially supported by the tension in the chain. Thus the tension in the pendulum string is not the same as before. The horizontal component of the tension in the chain will be equal and opposite to the horizontal component of the tension in the pendulum string.

Your picture should show the weight vector acting straight downward, the tension in the pendulum string acting upward and to the left at an angle of 20 degrees to vertical and the tension in the chain should act upward into the right at an angle of 40 degrees above horizontal. The lengths of the vectors should be adjusted so that the horizontal components of the two tensions are equal and opposite, and so that the sum of the vertical components of the two tensions is equal of opposite to the weight vector.

Since both tensions are unknown we will let T1 stand for the tension in the pendulum and T2 for the tension in the chain. Then T1, as in the preceding problem, acts at an angle of 110 degrees as measured counterclockwise from the positive x axis, and T2 acts at an angle of 40 degrees.

At this point whether or not we know where we are going, we should realize that we need to break everything into x and y components. It is advisable to put this information into a table something like the following:

x comp y comp

T1 T1 * cos(110 deg) T1 * sin(110 deg) in

T2 T2 * cos(40 deg) T2 * sin(40 deg)

Weight 0 -19.6 N

The pendulum is held in equilibrium, so the sum of all the x components must be 0, as must the sum of all y components. We thus obtain the two equations

T1 * cos(110 deg) + T2 * cos(40 deg) = 0 and

T1 * sin(110 deg) + T2 * sin(40 deg) - 19.6 N = 0.

The values of the sines and cosines can be substituted into the equations obtain the equations

-.33 T1 + .77 T2 = 0

.95 T1 + .64 T2 - 19.6 N = 0.

We solve these two simultaneous equations for T1 and T2 using one of the usual methods. Here we will solve using the method of substitution.

If we solve the first equation for T1 in terms of T2 we obtain T1 = .77 T2 / .33 = 2.3 T2. Substituting 2.3 T2 for T1 in the second equation we obtain

.95 * 2.3 T2 + .64 T2 - 19.6 N = 0, which we easily rearrange to obtain

2.18 T2 + .64 T2 = 19.6 Newtons, or

2.82 T2 = 19.6 N, which has solution

T2 = 19.6 Newtons/2.82 = 6.9 N, approximately.

Since T1 = 2.3 T2, we have T1 = 2.3 * 6.9 N = 15.9 N, approximately.

Thus the pendulum string has tension approximately 15.9 Newtons and the chain the tension of approximately 6.9 Newtons.

......!!!!!!!!...................................

RESPONSE -->

I reversed the string and the chain.

I knew I needed to break into x and y components, but I didn't know how to do it. I still don't really.

self critique assessment: 0

.................................................

You are on the right track with your questions, and you understand the trigonometry. This last question is beyond the scope of anything he will actually be asked in the problem sets or on the tests for your course, but if you understand this questions and you should have no trouble with either assigned problems or related test questions.