Assignment 11

course Mth 158

ºÏPÝ—é–ÆŸ’ùók‡í®òñd¥²Þassignment #011

011. `query 11

College Algebra

08-03-2009

......!!!!!!!!...................................

13:15:23

1.2.5. Explain, step by step, how you solved the equation z^2 - z - 6 = 0 using factoring.

......!!!!!!!!...................................

RESPONSE -->

first simplify

z(-z-6)=0

(z+2)(z-3)=0

(-2,3)

confidence rating: 1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

13:15:41

** STUDENT SOLUTION WITH INSTRUCTOR COMMENT:

I factored this and came up with

(z + 2)(z - 3) = 0

Which broke down to

z + 2 = 0 and z - 3 = 0

This gave me the set {-2, 3}

-2 however, doesn't check out, but only 3 does, so the solution is:

z = 3

INSTRUCTOR COMMENT: It's good that you're checking out the solutions, but note that -2 also checks: (-2)^2 - (-2) - 6 = 4 + 2 - 6 = 0. **

......!!!!!!!!...................................

RESPONSE -->

ok

------------------------------------------------

Self-critique Rating:ent: 0

.................................................

......!!!!!!!!...................................

13:21:49

STUDENT SOLUTION: v^2+7v+6=0. This factors into

(v + 1) (v + 6) = 0, which has solutions

v + 1 = 0 and v + 6 = 0, giving us

v = {-1, -6}

......!!!!!!!!...................................

RESPONSE -->

factors to

(v+1)(v+6)=0

for v+1=0 v must be negative -1

for v+6=0, must be -6

v=(-1,-6)

------------------------------------------------

Self-critique Rating:ent: 2

.................................................

......!!!!!!!!...................................

13:25:09

STUDENT SOLUTION: v^2+7v+6=0. This factors into

(v + 1) (v + 6) = 0, which has solutions

v + 1 = 0 and v + 6 = 0, giving us

v = {-1, -6}

......!!!!!!!!...................................

RESPONSE -->

not sure why answer came up before I put mine in?

------------------------------------------------

Self-critique Rating:ent: 0

.................................................

......!!!!!!!!...................................

13:48:14

1.2.20 (was 1.3.12). Explain how you solved the equation x(x+4)=12 by factoring.

......!!!!!!!!...................................

RESPONSE -->

X^2 + 4x=12

x^2 + 4x +12=12-12

x^2 + 4x +12=0

(x+2x)^2=0

confidence rating: 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

13:50:08

** Starting with

x(x+4)=12 apply the Distributive Law to the left-hand side:

x^2 + 4x = 12 add -12 to both sides:

x^2 + 4x -12 = 0 factor:

(x - 2)(x + 6) = 0 apply the zero property:

(x - 2) = 0 or (x + 6) = 0 so that

x = {2 , -6} **

......!!!!!!!!...................................

RESPONSE -->

I was trying a different way and got confused, makes sense now.

------------------------------------------------

Self-critique Rating:ent: 0

.................................................

......!!!!!!!!...................................

13:54:32

1.2.26 (was 1.2.38) (was 1.3.18). Explain how you solved the equation x + 12/x = 7 by factoring.

......!!!!!!!!...................................

RESPONSE -->

Multiply x to both sides

x + 12/x * x =7x

x^2 +12 = 7x

subtract 7x from both sides

x^2 - 7x + 12= 7x-7x

x^2 -7x + 12=0

(X-3)=0

(x-4)=0

x=3, x=4

(3,4)

confidence rating: 4

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

13:59:07

** (x + 2)^2 = 1 so that

x + 2 = ± sqrt(1) giving us

x + 2 = 1 or x + 2 = -1 so that

x = {-1, -3} **

......!!!!!!!!...................................

RESPONSE -->

Not sure why showed answer and not problem...

here was my work

x+2 = sq rt of 1

x+2=-1 and x+2=1

so x could be a -1 or a -3

------------------------------------------------

Self-critique Rating:ent: 3

.................................................

......!!!!!!!!...................................

14:06:56

1.2.44 (was 1.3.36). Explain how you solved the equation x^2 + 2/3 x - 1/3 = 0 by completing the square.

......!!!!!!!!...................................

RESPONSE -->

x^2 + 2/3x=1/3

x^2 + 2/3x * 1/3=1/3 * 1/3

x^2 + 2/3x * 1/3= 1/9

this is as far as i got

confidence rating: 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

14:08:58

** x^2 + 2/3x - 1/3 = 0. Multiply both sides by the common denominator 3 to get

3 x^2 + 2 x - 1 = 0. Factor to get

(3x - 1) ( x + 1) = 0. Apply the zero property to get

3x - 1 = 0 or x + 1 = 0 so that

x = 1/3 or x = -1.

DER**

......!!!!!!!!...................................

RESPONSE -->

that makes sense after reading your notes.

------------------------------------------------

Self-critique Rating:ent: 0

.................................................

......!!!!!!!!...................................

14:14:16

1.2.50 (was 1.2.52) (was 1.3.42). Explain how you solved the equation x^2 + 6x + 1 = 0 using the quadratic formula.

......!!!!!!!!...................................

RESPONSE -->

first sub a,b,c and write in formula

ax^2 + bx + c=0

a=1 b=6 and c=1

next use b^2-4ac = 6^2 -4(1)(1)=36-4=32

6 +/- sq rt 32/2

confidence rating: 0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

14:17:25

** Starting with

x^2 + 6x + 1 = 0 we identify this as having the form a x^2 + b x + c = 0 with a = 1, b = 6 and c = 1.

We plug values into quadratic formula to get

x = [-6 ± sqrt(6^2 - 4 * 1 * 1) ] / 2 *1

x = [ -6 ± sqrt(36 - 4) / 2

x = { -6 ± sqrt (32) ] / 2

36 - 4 = 32, so x has 2 real solutions,

x = { [-6 + sqrt(32) ] / 2 , [-6 - sqrt(32) ] / 2 }

Note that sqrt(32) simplifies to sqrt(16) * sqrt(2) = 4 sqrt(2) so this solution set can be written

{ [-6 + 4 sqrt(2) ] / 2 , [-6 - 4 sqrt(2) ] / 2 }, and this can be simplified by dividing numerators by 2:

{ -3 + 2 sqrt(2), -3 - 2 sqrt(2) }. **

......!!!!!!!!...................................

RESPONSE -->

ok

------------------------------------------------

Self-critique Rating:ent: 0

.................................................

......!!!!!!!!...................................

14:17:33

1.2.74 (was 1.2.72) (was 1.3.66). Explain how you solved the equation pi x^2 + 15 sqrt(2) x + 20 = 0 using the quadratic formula and your calculator.

......!!!!!!!!...................................

RESPONSE -->

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.................................................

......!!!!!!!!...................................

14:17:38

** Applying the quadratic formula with a = pi, b = 15 sqrt(2) and c = 20 we get

x = [ (-15sqrt(2)) ± sqrt ((-15sqrt(2))^2 -4(pi)(20)) ] / ( 2 pi ).

(-15sqrt(2))^2 - 4(pi)(20) = 225 * 2 - 80 pi = 450 - 80 pi = 198.68 approx., so there are 2 unequal real solutions.

Our expression is therefore

x = [ (-15sqrt(2)) ± 198.68] / ( 2 pi ). Evaluating with a calculator we get

x = { 5.62, 1.13 }.

DER**

......!!!!!!!!...................................

RESPONSE -->

ok

------------------------------------------------

Self-critique Rating:ent:

.................................................

"

&#Good responses. Let me know if you have questions. &#