#$&* course Mth 173 9/21 around 4:00 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: ** Specific statements: When multiplied by a quantity the growth rate tells us how much the quantity will change over a single period. When multiplied by the quantity the growth factor gives us the new quantity at the end of the next period. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):
.............................................
Given Solution: ** GOOD ANSWER BY STUDENT WITH INSTRUCTOR COMMENTS: The slope of the trapezoids will indicate rise over run or the slope will represent a change in depth / time interval thus an average rate of change of depth with respect to time INSTRUCTOR COMMENTS: More detail follows: ** To explain the meaning of the slope you have to reason the question out in terms of rise and run and slope. For this example rise represents change in depth and run represent change in clock time; rise / run therefore represents change in depth divided by change in clock time, which is the average rate of change. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `q Explain why the area of a rate vs. time trapezoid for a given time interval represents the change in the quantity corresponding to that time interval. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The rate corressponds with the time because as the time goes up so does the rate on the graph.
.............................................
Given Solution: **STUDENT RESPONSE WITH INSTRUCTOR COMMENTS: The area of a rate vs. time graph rep. the change in quantity. Calculating the area under the graph is basically integration The accumulated area of all the trapezoids for a range will give us thetotal change in quantity. The more trapezoids used the more accurate the approx. INSTRUCTOR COMMENTS: All very good but the other key point is that the average altitude represents the average rate, which when multiplied by the width which represents time interval gives the change in quantity You have to reason this out in terms of altitudes, widths and areas. For the rate of depth change example altitude represents rate of depth change so average altitude represents average rate of depth change, and width represents change in clock time. average altitude * width therefore represents ave rate of depth change * duration of time interval = change in depth. For the rate of change of a quantity other than depth, the reasoning is identical except you'll be talking about something besides depth. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):
.............................................
Given Solution: ** Every hour 11% or .11 of the total is lost so the growth rate is -.11 and the growth factor is 1 + r = 1 + (-.11) = .89 and we have Q(t) = Q0 * (1 + r)^t = 550 mg (.89)^t or Q(t)=550(.89)^tÿ ** How much antibiotic is present at 3:00 p.m.? ** 3:00 p.m. is 5 hours after the initial time so at that time there will be Q(5) = 550 mg * .89^5 = 307.123mg in the blood ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `q Describe your graph and explain how it was used to estimate half-life. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Starting from any point on the graph we first project horizontally and vertically to the coordinate axes to find the coordinates of that point
.............................................
Given Solution: ** Starting from any point on the graph we first project horizontally and vertically to the coordinate axes to obtain the coordinates of that point. The vertical coordinate represents the quantity Q(t), so we find the point on the vertical axis which is half as high as the vertical coordinate of our starting point. We then draw a horizontal line directly over to the graph, and project this point down. The horizontal distance from the first point to the second will be the distance on the t axis between the two vertical projection lines. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):
.............................................
Given Solution: ** Q(doublingTime) = 1/2 Q(0)or 550 mg * .89^doublingTIme = .5 * 550 mg. Dividing thru by the 550 mg we have .89^doublingTime = .5. We can use trial and error to find an approximate value for doublingTIme (later we use logarithms to get the accurate solution). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `q #19. For the function Q(t) = Q0 (1.1^ t), a value of t such that Q(t) lies between .05 Q0 and .1 Q0. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q For what values of t did Q(t) lie between .005 Q0 and .01 Q0? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Any value between about t = -24.2 and t = -31.4 will result in Q(t) between .05 Q0 and .1 Q0. Must be negative confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** Any value between about t = -24.2 and t = -31.4 will result in Q(t) between .05 Q0 and .1 Q0. Note that these values must be negative, since positive powers of 1.1 are all greater than 1, resulting in values of Q which are greater than Q0. Solving Q(t) = .05 Q0 we rewrite this as Q0 * 1.1^t = .05 Q0. Dividing both sides by Q0 we get 1.1^t = .05. We can use trial and error (or if you know how to use them logarithms) to approximate the solution. We get t = -31.4 approx. Solving Q(t) = .1 Q0 we rewrite this as Q0 * 1.1^t = .1 Q0. Dividing both sides by Q0 we get 1.1^t = .1. We can use trial and error (or if you know how to use them logarithms) to approximate the solution. We get t = -24.2 approx. (The solution for .005 Q0 is about -55.6, for .01 is about -48.3 For this solution any value between about t = -48.3 and t = -55.6 will work). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `q explain why the negative t axis is a horizontal asymptote for this function. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The value of 1.1^t increases t; as t approaches infinity 1.1^t also approaches infinity. Since 1.1^-t = 1 / 1.1^t, you can see that for increasingly large negative values of t the value of 1.1^t will be smaller and smaller, and would in fact approach zero confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The value of 1.1^t increases for increasing t; as t approaches infinity 1.1^t also approaches infinity. Since 1.1^-t = 1 / 1.1^t, we see that for increasingly large negative values of t the value of 1.1^t will be smaller and smaller, and would in fact approach zero. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `q #22. What value of b would we use to express various functions in the form y = A b^x? What is b for the function y = 12 ( e^(-.5x) )? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 12 e^(-.5 x) = 12 (e^-.5)^x = 12 * .61^x confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** 12 e^(-.5 x) = 12 (e^-.5)^x = 12 * .61^x, approx. So this function is of the form y = A b^x for b = .61 approx.. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `q what is b for the function y = .007 ( e^(.71 x) )? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: .007 e^(.71 x) = .007 (e^.71)^x = .007 * 2.04^x confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** .007 e^(.71 x) = .007 (e^.71)^x = .007 * 2.04^x, approx. So this function is of the form y = A b^x for b = 2.041 approx.. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `q what is b for the function y = -13 ( e^(3.9 x) )? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: -13 e^(3.9 x) = -13 (e^3.9)^x = -13 * 49.4^x confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** -13 e^(3.9 x) = -13 (e^3.9)^x = -13 * 49.4^x, approx. So this function is of the form y = A b^x for b = 49.4 approx.. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `q List these functions, each in the form y = A b^x. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y=12(.6065^x) y=.007(2.03399^x) y=-13(49.40244^x) confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The functions are y=12(.6065^x) y=.007(2.03399^x) and y=-13(49.40244^x) ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `q query text problem 1.1.31 5th; 1.1.23 4th dolphin energy prop cube of vel YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: E = k v^3 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** A proportionality to the cube would be E = k v^3. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `q query text problem 1.1.37 5th; 1.1.32 4th temperature function H = f(t), meaning of H(30)=10, interpret vertical and horizontal intercepts YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Interpretation is vertical intercept represents the temperature at clock time t = 0, while the horizontal intercept represents the clock time at which the temperature reaches zero The equation H(30) = 10? Meaning that when clock time t is 30, the temperature H is 10 confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The interpretation would be that the vertical intercept represents the temperature at clock time t = 0, while the horizontal intercept represents the clock time at which the temperature reaches zero. ** what is the meaning of the equation H(30) = 10? ** This means that when clock time t is 30, the temperature H is 10. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `q What is the meaning of the vertical intercept? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Value of H when t = 0, temperature at clock time 0 confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** This is the value of H when t = 0--i.e., the temperature at clock time 0. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `q What is the meaning of the horizontal intercept? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: t value when H = 0 the clock time when temperature reaches 0 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** This is the t value when H = 0--the clock time when temperature reaches 0 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ok ********************************************* Question: `q query text problem 1.1.40 5th; 1.1.31 4th. Water freezes 0 C, 32 F; boils 100 C, 212 F. Give your solution. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = 1.8 x + 32 confidence rating #$&*: 1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The graph contains points (0, 32) and (100, 212). The slope is therefore (212-32) / (100-0) = 1.8. The y-intercept is 32 so the equation of the line is y = 1.8 x + 32, or using F and C F = 1.8 C + 32. To find the Fahrenheit temp corresponding to 20 C we substitute C = 20 into F = 1.8 C + 32 to get F = 1.8 * 20 + 32 = 36 + 32 = 68 The two temperatures will be equal when F = C. Substituting C for F in F = 1.8 C + 32 we get C = 1.8 C + 32. Subtracting 1.8 C from both sides we have -.8 C = 32 or C = 32 / (-.8) = -40. The scales read the same at -40 degrees. ** STUDENT QUESTION I understand all work shown except the answer for d? I understand how to substaute and see how you worked it, but don’t understand the logic for why this works ? INSTRUCTOR RESPONSE You have a linear function which gives you F when you substitute C. That means that the graph of F vs. C is a straight line. According to the given information the straight line passes through the points (0, 32) and (100, 212). Given two points, there are a variety of ways to get the equation of the corresponding straight line. The given solution finds the slope, then uses slope-intercept form of the equation of a straight line. Alternatively you could use the point-point form of the equation, which would lead to the same result. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: bad" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!