course Phy 231
.................................................˨{Oѕw`
......!!!!!!!!...................................
18:17:32 `q001. The graph of a certain function is a smooth curve passing through the points (3, 5), (7, 17) and (10, 29). Between which two points do you think the graph is steeper, on the average? Why do we say 'on the average'?
......!!!!!!!!...................................
RESPONSE --> slope between (3,5) and (7,17) = (17-5)/(7-3) = 12/4 = 3 slope between (7,17) and (10,29) = (29-17)/(10-7) = 12/3 = 4 slope between (3,5) and (10,29) = (29-5)/(10-3) = 24/7 The graph is steeper on the average between points (7,17) and (10,29) because the slope is the biggest between those points. We say on the average because the line connecting all three points has a different slope at different times. confidence assessment: 3
.................................................
......!!!!!!!!...................................
18:17:58 Slope = rise / run. Between points (7, 17) and (10, 29) we get rise / run = (29 - 17) / (10 - 7) =12 / 3 = 4. The slope between points (3, 5) and (7, 17) is 3 / 1. (17 - 5) / (7 -3) = 12 / 4 = 3. The segment with slope 4 is the steeper. The graph being a smooth curve, slopes may vary from point to point. The slope obtained over the interval is a specific type of average of the slopes of all points between the endpoints.
......!!!!!!!!...................................
RESPONSE --> OK self critique assessment: 3
.................................................
......!!!!!!!!...................................
21:48:05 2. Answer without using a calculator: As x takes the values 2.1, 2.01, 2.001 and 2.0001, what values are taken by the expression 1 / (x - 2)? 1. As the process continues, with x getting closer and closer to 2, what happens to the values of 1 / (x-2)? 2. Will the value ever exceed a billion? Will it ever exceed one trillion billions? 3. Will it ever exceed the number of particles in the known universe? 4. Is there any number it will never exceed? 5. What does the graph of y = 1 / (x-2) look like in the vicinity of x = 2?
......!!!!!!!!...................................
RESPONSE --> when x=2.1, 1/(2.1-2) = 10. when x=2.01, 1/(2.01-2) = 100. when x=2.001, 1/(2.001-2) = 1000. when x=2.0001, 1/(2.0001-2) = 10000. When x gets closer to 2, the value of the expression becomes larger. The value of the expression will go off to infinity and yes will surpass a billion and one trillion billions. I don't know how many particles there are in the universe but yes the expression will exceed whatever that number is. There is no number it won't exceed. The graph is asymptotic (i didnt spell that right) in the vicinity of x=2. self critique assessment: 3
.................................................
......!!!!!!!!...................................
21:48:49 For x = 2.1, 2.01, 2.001, 2.0001 we see that x -2 = .1, .01, .001, .0001. Thus 1/(x -2) takes respective values 10, 100, 1000, 10,000. It is important to note that x is changing by smaller and smaller increments as it approaches 2, while the value of the function is changing by greater and greater amounts. As x gets closer in closer to 2, it will reach the values 2.00001, 2.0000001, etc.. Since we can put as many zeros as we want in .000...001 the reciprocal 100...000 can be as large as we desire. Given any number, we can exceed it. Note that the function is simply not defined for x = 2. We cannot divide 1 by 0 (try counting to 1 by 0's..You never get anywhere. It can't be done. You can count to 1 by .1's--.1, .2, .3, ..., .9, 1. You get 10. You can do similar thing for .01, .001, etc., but you just can't do it for 0). As x approaches 2 the graph approaches the vertical line x = 2; the graph itself is never vertical. That is, the graph will have a vertical asymptote at the line x = 2. As x approaches 2, therefore, 1 / (x-2) will exceed all bounds. Note that if x approaches 2 through the values 1.9, 1.99, ..., the function gives us -10, -100, etc.. So we can see that on one side of x = 2 the graph will approach +infinity, on the other it will be negative and approach -infinity.
......!!!!!!!!...................................
RESPONSE --> OK self critique assessment: 3
.................................................
......!!!!!!!!...................................
22:31:48 `q003. One straight line segment connects the points (3,5) and (7,9) while another connects the points (10,2) and (50,4). From each of the four points a line segment is drawn directly down to the x axis, forming two trapezoids. Which trapezoid has the greater area? Try to justify your answer with something more precise than, for example, 'from a sketch I can see that this one is much bigger so it must have the greater area'.
......!!!!!!!!...................................
RESPONSE --> The first trapezoid's points are (3,5), (7,9), (3,0), and (7,0). I'm going to split the trapezoid into one triangle and one rectangle. The triangle has an area of 1/2 *4*4 = 8. The rectangle has an area of 4 * 5= 20. The total area of the first trapezoid is 28 units squared. Doing the same for the second trapezoid, the points are (10,2), (50,4), (10,0), and (50,0). The triangle's area is 1/2 *40 * 2= 40. The rectangles are is 40 * 2= 80. The area of the second trapezoid is 120 units squared. The second trapezoid is much bigger. confidence assessment: 3
.................................................
......!!!!!!!!...................................
22:32:26 Your sketch should show that while the first trapezoid averages a little more than double the altitude of the second, the second is clearly much more than twice as wide and hence has the greater area. To justify this a little more precisely, the first trapezoid, which runs from x = 3 to x = 7, is 4 units wide while the second runs from x = 10 and to x = 50 and hence has a width of 40 units. The altitudes of the first trapezoid are 5 and 9,so the average altitude of the first is 7. The average altitude of the second is the average of the altitudes 2 and 4, or 3. So the first trapezoid is over twice as high, on the average, as the first. However the second is 10 times as wide, so the second trapezoid must have the greater area. This is all the reasoning we need to answer the question. We could of course multiply average altitude by width for each trapezoid, obtaining area 7 * 4 = 28 for the first and 3 * 40 = 120 for the second. However if all we need to know is which trapezoid has a greater area, we need not bother with this step.
......!!!!!!!!...................................
RESPONSE --> OK self critique assessment: 3
.................................................
......!!!!!!!!...................................
22:39:12 `q004. If f(x) = x^2 (meaning 'x raised to the power 2') then which is steeper, the line segment connecting the x = 2 and x = 5 points on the graph of f(x), or the line segment connecting the x = -1 and x = 7 points on the same graph? Explain the basisof your reasoning.
......!!!!!!!!...................................
RESPONSE --> For the first line segment, when x=2, y=4. And when x=5, y=25. So we have the points (2,4) and (5,25). The slope = m = (25-4)/(5-2) =21/3= 7. For the second line segment, when x=-1, y=1. And when x=7, y=49. So we have the points (-1,1) and (7,49). m= (49-1)/(7- -1) =48/8 = 6. The first line segment is steeper. confidence assessment: 3
.................................................
......!!!!!!!!...................................
22:39:24 The line segment connecting x = 2 and the x = 5 points is steeper: Since f(x) = x^2, x = 2 gives y = 4 and x = 5 gives y = 25. The slope between the points is rise / run = (25 - 4) / (5 - 2) = 21 / 3 = 7. The line segment connecting the x = -1 point (-1,1) and the x = 7 point (7,49) has a slope of (49 - 1) / (7 - -1) = 48 / 8 = 6. The slope of the first segment is greater.
......!!!!!!!!...................................
RESPONSE --> OK self critique assessment: 3
.................................................
......!!!!!!!!...................................
22:44:24 `q005. Suppose that every week of the current millenium you go to the jewler and obtain a certain number of grams of pure gold, which you then place in an old sock and bury in your backyard. Assume that buried gold lasts a long, long time ( this is so), that the the gold remains undisturbed (maybe, maybe not so), that no other source adds gold to your backyard (probably so), and that there was no gold in your yard before.. 1. If you construct a graph of y = the number of grams of gold in your backyard vs. t = the number of weeks since Jan. 1, 2000, with the y axis pointing up and the t axis pointing to the right, will the points on your graph lie on a level straight line, a rising straight line, a falling straight line, a line which rises faster and faster, a line which rises but more and more slowly, a line which falls faster and faster, or a line which falls but more and more slowly? 2. Answer the same question assuming that every week you bury 1 more gram than you did the previous week. {}3. Answer the same question assuming that every week you bury half the amount you did the previous week.
......!!!!!!!!...................................
RESPONSE --> The points would lie on a level straight line because t values are increasing but y values are remaining constant. Every week t is one greater and y is one greater. The points on the line would be a rising straight line. The line would rise but more and more slowly. confidence assessment: 3
.................................................
......!!!!!!!!...................................
22:44:29 `q005. Suppose that every week of the current millenium you go to the jewler and obtain a certain number of grams of pure gold, which you then place in an old sock and bury in your backyard. Assume that buried gold lasts a long, long time ( this is so), that the the gold remains undisturbed (maybe, maybe not so), that no other source adds gold to your backyard (probably so), and that there was no gold in your yard before.. 1. If you construct a graph of y = the number of grams of gold in your backyard vs. t = the number of weeks since Jan. 1, 2000, with the y axis pointing up and the t axis pointing to the right, will the points on your graph lie on a level straight line, a rising straight line, a falling straight line, a line which rises faster and faster, a line which rises but more and more slowly, a line which falls faster and faster, or a line which falls but more and more slowly? 2. Answer the same question assuming that every week you bury 1 more gram than you did the previous week. {}3. Answer the same question assuming that every week you bury half the amount you did the previous week.
......!!!!!!!!...................................
RESPONSE --> OK confidence assessment:
.................................................
......!!!!!!!!...................................
22:46:37 1. If it's the same amount each week it would be a straight line. 2. Buying gold every week, the amount of gold will always increase. Since you buy more each week the rate of increase will keep increasing. So the graph will increase, and at an increasing rate. 3. Buying gold every week, the amount of gold won't ever decrease. Since you buy less each week the rate of increase will just keep falling. So the graph will increase, but at a decreasing rate. This graph will in fact approach a horizontal asymptote, since we have a geometric progression which implies an exponential function.
......!!!!!!!!...................................
RESPONSE --> I didn't read the second part's question completely. I see the mistake. On the third part, the value of y is increasing less and less while t is continously adding one, so yes it would be increasing but at a decreasing rate. self critique assessment: 2
.................................................
......!!!!!!!!...................................
22:47:23 `q006. Suppose that every week you go to the jewler and obtain a certain number of grams of pure gold, which you then place in an old sock and bury in your backyard. Assume that buried gold lasts a long, long time, that the the gold remains undisturbed, and that no other source adds gold to your backyard. 1. If you graph the rate at which gold is accumulating from week to week vs. tne number of weeks since Jan 1, 2000, will the points on your graph lie on a level straight line, a rising straight line, a falling straight line, a line which rises faster and faster, a line which rises but more and more slowly, a line which falls faster and faster, or a line which falls but more and more slowly? 2. Answer the same question assuming that every week you bury 1 more gram than you did the previous week. 3. Answer the same question assuming that every week you bury half the amount you did the previous week.
......!!!!!!!!...................................
RESPONSE --> I just answered this question. confidence assessment: 3
.................................................
......!!!!!!!!...................................
22:48:41 This set of questions is different from the preceding set. This question now asks about a graph of rate vs. time, whereas the last was about the graph of quantity vs. time. Question 1: This question concerns the graph of the rate at which gold accumulates, which in this case, since you buy the same amount eact week, is constant. The graph would be a horizontal straight line. Question 2: Each week you buy one more gram than the week before, so the rate goes up each week by 1 gram per week. You thus get a risingstraight line because the increase in the rate is the same from one week to the next. Question 3. Since half the previous amount will be half of a declining amount, the rate will decrease while remaining positive, so the graph remains positive as it decreases more and more slowly. The rate approaches but never reaches zero.
......!!!!!!!!...................................
RESPONSE --> I see the answers would still be the same but they are dealing with rates instead of quantity. self critique assessment: 3
.................................................
......!!!!!!!!...................................
22:54:13 ``q007. If the depth of water in a container is given, in centimeters, by 100 - 2 t + .01 t^2, where t is clock time in seconds, then what are the depths at clock times t = 30, t = 40 and t = 60? On the average is depth changing more rapidly during the first time interval or the second?
......!!!!!!!!...................................
RESPONSE --> when t=30, depth is 100-60+.01*30^2 = 49. when t=40, depth is 100-80+.01*40^2 = 36. when t=60, depth is 100-120+.01*60^2 = 16. 49-36 = 13. 36-16 = 20. During the second time interval time is changing more rapidly. self critique assessment: 3
.................................................
......!!!!!!!!...................................
22:55:00 At t = 30 we get depth = 100 - 2 t + .01 t^2 = 100 - 2 * 30 + .01 * 30^2 = 49. At t = 40 we get depth = 100 - 2 t + .01 t^2 = 100 - 2 * 40 + .01 * 40^2 = 36. At t = 60 we get depth = 100 - 2 t + .01 t^2 = 100 - 2 * 60 + .01 * 60^2 = 16. 49 cm - 36 cm = 13 cm change in 10 sec or 1.3 cm/s on the average. 36 cm - 16 cm = 20 cm change in 20 sec or 1.0 cm/s on the average.
......!!!!!!!!...................................
RESPONSE --> I forgot to account for seconds. self critique assessment: 2
.................................................
......!!!!!!!!...................................
23:00:28 `q008. If the rate at which water descends in a container is given, in cm/s, by 10 - .1 t, where t is clock time in seconds, then at what rate is water descending when t = 10, and at what rate is it descending when t = 20? How much would you therefore expect the water level to change during this 10-second interval?
......!!!!!!!!...................................
RESPONSE --> when t=10, rate at which water decends is given by 10-.1(10) = 9 cm/s. when t=20, it is given by 10-.1(20) = 8 cm/s. the average rate of change within this time interval is 8.5 cm/s. It is a 10 second interval, so the water would change 10*8.5 = 85 cm. confidence assessment: 3
.................................................
......!!!!!!!!...................................
23:00:54 At t = 10 sec the rate function gives us 10 - .1 * 10 = 10 - 1 = 9, meaning a rate of 9 cm / sec. At t = 20 sec the rate function gives us 10 - .1 * 20 = 10 - 2 = 8, meaning a rate of 8 cm / sec. The rate never goes below 8 cm/s, so in 10 sec the change wouldn't be less than 80 cm. The rate never goes above 9 cm/s, so in 10 sec the change wouldn't be greater than 90 cm. Any answer that isn't between 80 cm and 90 cm doesn't fit the given conditions.. The rate change is a linear function of t. Therefore the average rate is the average of the two rates, or 9.5 cm/s. The average of the rates is 8.5 cm/sec. In 10 sec that would imply a change of 85 cm.
......!!!!!!!!...................................
RESPONSE --> OK self critique assessment: 3
.................................................
gr41
course Phy 231 end programyw将
......!!!!!!!!...................................
09:43:44 `q001. There are two parts to this problem. Reason them out using common sense. If the speed of an automobile changes by 2 mph every second, then how long will it take the speedometer to move from the 20 mph mark to the 30 mph mark? Given the same rate of change of speed, if the speedometer initially reads 10 mph, what will it read 7 seconds later?
......!!!!!!!!...................................
RESPONSE --> For the first second the speedometer would read 22 then 24, 26, 28, and then 30. Thats five seconds. It would read 24mph. 7*2=14, adding the initial speed, 10+14 = 24mph. confidence assessment: 3
.................................................
......!!!!!!!!...................................
09:43:58 It will take 5 seconds to complete the change. 30 mph - 20 mph = 10 mph change at 2 mph per second (i.e., 2 mph every second) implies 5 seconds to go from 20 mph to 30 mph Change in speed is 2 mph/second * 7 seconds = 14 mph Add this to the initial 10 mph and the speedometer now reads 24 mph.
......!!!!!!!!...................................
RESPONSE --> OK self critique assessment: 3
.................................................
......!!!!!!!!...................................
09:47:56 `q002. An automobile traveling down a hill passes a certain milepost traveling at a speed of 10 mph, and proceeds to coast to a certain lamppost further down the hill, with its speed increasing by 2 mph every second. The time required to reach the lamppost is 10 seconds. It then repeats the process, this time passing the milepost at a speed of 20 mph. Will the vehicle require more or less than 10 seconds to reach the lamppost? Since its initial speed was 10 mph greater than before, does it follow that its speed at the lamppost will be 10 mph greater than before?
......!!!!!!!!...................................
RESPONSE --> The vehicle would require less time to pass the lampost because it has a greater initial velocity. The vehicle would pass the lampost at a speed 10mph faster than the initial run because the rate of speed is the same for both runs but the only difference is the initial velocity. confidence assessment: 2
.................................................
......!!!!!!!!...................................
09:49:24 If it starts coasting down the same section of road at 20 mph, and if velocity changes by the same amount every second, the automobile should always be traveling faster than if it started at 10 mph, and would therefore take less than 10 seconds. The conditions here specify equal distances, which implies less time on the second run. The key is that, as observed above, the automobile has less than 10 seconds to increase its speed. Since its speed is changing at the same rate as before and it has less time to change it will therefore change by less.
......!!!!!!!!...................................
RESPONSE --> Oh I see I didn't take into account that during the second run the car has less time to accelerate then the initial run. self critique assessment: 2
.................................................
......!!!!!!!!...................................
09:54:08 `q003. The following example shows how we can measure the rate at which an automobile speeds up: If an automobile speeds up from 30 mph to 50 mph as the second hand of a watch moves from the 12-second position to the 16-second position, and its speed changes by 20 mph in 4 seconds. This gives us an average rate of velocity change equal to 20 mph / 4 seconds = 5 mph / second. We wish to compare the rates at which two different automobiles increase their speed: Which automobile speeds up at the greater rate, one which speeds up from 20 mph to 30 mph in five seconds or one which speeds up from 40 mph to 90 mph in 20 seconds?
......!!!!!!!!...................................
RESPONSE --> The first car speeds up at a rate of 30-20 =10, 10mph/5sec =2mph/sec. The second car speeds up at a rate of 90-40=50, 50mph/20sec = 2.5mph/sec. The second car speeds up at a greater rate. confidence assessment: 3
.................................................
......!!!!!!!!...................................
09:54:26 The first automobile's speed changes from 20 mph to 30mph, a 10 mph difference, which occurs in 5 seconds. So the rate of chage in 10 mph / (5 sec) = 2 mph / sec. = rate of change of 2 mph per second. }{The second automobile's speed changes from 40 mph to 90 mph, a 50 mph difference in 20 seconds so the rate of change is 50 mph / (20 sec) = 2.5 mph per second. Therefore, the second auto is increasing its velocity ar a rate which is .5 mph / second greater than that of the first.
......!!!!!!!!...................................
RESPONSE --> OK self critique assessment: 3
.................................................
......!!!!!!!!...................................
10:00:12 4. If an automobile of mass 1200 kg is pulled by a net force of 1800 Newtons, then the number of Newtons per kg is 1800 / 1200 = 1.5. The rate at which an automobile speeds up is determined by the net number of Newtons per kg. Two teams pulling on ropes are competing to see which can most quickly accelerate their initially stationary automobile to 5 mph. One team exerts a net force of 3000 Newtons on a 1500 kg automobile while another exerts a net force of 5000 Newtons on a 2000 kg automobile. Which team will win and why? If someone pulled with a force of 500 Newtons in the opposite direction on the automobile predicted to win, would the other team then win?
......!!!!!!!!...................................
RESPONSE --> The first team: 3000newtons/1500kg = 2newtons/kg. The second team: 5000newtons/2000kg = 2.5newtons/kg. The second team would win because they are pulling with more newtons per kg. 5000newtons-500newtons= 4500newtons 4500newtons/2000kg = 2.25newtons/kg. The second team would still win. self critique assessment: 3
.................................................
......!!!!!!!!...................................
10:00:33 The first team's rate is 3000 Newtons divided by 1500 kg or 2 Newtons per kg, while the second team's rate is 5000 Newtons divided by 2000 kg or 2.5 Newtons per kg. The second team therefore increases velocity more quickly. Since both start at the same velocity, zero, the second team will immediately go ahead and will stay ahead. The second team would still win even if the first team was hampered by the 500 Newton resistance, because 5000 Newtons - 500 Newtons = 4500 Newtons of force divided by 2000 kg of car gives 2.25 Newtons per kg, still more than the 2 Newtons / kg of the first team
......!!!!!!!!...................................
RESPONSE --> OK self critique assessment: 3
.................................................
......!!!!!!!!...................................
10:05:39 `q005. Both the mass and velocity of an object contribute to its effectiveness in a collision. If a 250-lb football player moving at 10 feet per second collides head-on with a 200-lb player moving at 20 feet per second in the opposite direction, which player do you precidt will be moving backward immediately after the collision, and why?
......!!!!!!!!...................................
RESPONSE --> I predict that the 250lb player would move backward because the 200lb player is moving at twice the speed as the 250lb player and is only 4/5 the weight. confidence assessment: 3
.................................................
......!!!!!!!!...................................
10:06:05 Greater speed and greater mass both provide advantages. In this case the player with the greater mass has less speed, so we have to use some combination of speed and mass to arrive at a conclusion. It turns out that if we multiply speed by mass we get the determining quantity, which is called momentum. 250 lb * 10 ft/sec = 2500 lb ft / sec and 200 lb * 20 ft/sec = 4000 lb ft / sec, so the second player will dominate the collision. In this course we won't use pounds as units, and in a sense that will become apparent later on pounds aren't even valid units to use here. However that's a distinction we'll worry about when we come to it.
......!!!!!!!!...................................
RESPONSE --> OK self critique assessment: 3
.................................................
......!!!!!!!!...................................
10:08:46 `q006. Two climbers eat Cheerios for breakfast and then climb up a steep mountain as far as they can until they use up all their energy from the meal. All other things being equal, who should be able to climb further up the mountain, the 200-lb climber who has eaten 12 ounces of Cheerios or the 150-lb climber who has eaten 10 ounces of Cheerios?
......!!!!!!!!...................................
RESPONSE --> 200lb/12oun = 16 2/3 lb/oz 150lb/10oun = 15 lb/oz. The 150 lb climber would climb up further because there are more ounces per pound. confidence assessment: 3
.................................................
......!!!!!!!!...................................
10:09:04 The comparison we make here is the number of ounces of Cheerios per pound of body weight. We see that the first climber has 12 oz / (200 lb) = .06 oz / lb of weight, while the second has 10 0z / (150 lb) = .067 oz / lb. The second climber therefore has more energy per pound of body weight. It's the ounces of Cheerios that supply energy to lift the pounds of climber. The climber with the fewer pounds to lift for each ounce of energy-producing Cheerios will climb further.
......!!!!!!!!...................................
RESPONSE --> OK self critique assessment: 3
.................................................
......!!!!!!!!...................................
10:56:55 `q007. Two automobiles are traveling up a long hill with an steepness that doesn't change until the top, which is very far away, is reached. One automobile is moving twice as fast as the other. At the instant the faster automobile overtakes the slower their drivers both take them out of gear and they coast until they stop. Which automobile will take longer to come to a stop? Will that automobile require about twice as long to stop, more than twice as long or less than twice as long? Which automobile will have the greater average coasting velocity? Will its average coasting velocity by twice as great as the other, more than twice as great or less than twice as great? Will the distance traveled by the faster automobile be equal to that of the slower, twice that of the slower or more than twice that of the slower?
......!!!!!!!!...................................
RESPONSE --> I would say the faster vehicle would take longer to stop because it has more momentum. The vehicle would take less than twice as long to stop because it is covering more distance and the hill is getting steeper. The faster vehicle would have a greater average coasting velocity because it was initially moving faster. The average coasting velocity would be less than twice a s great because it would take longer to slow down. The faster automoblie would travel twice the distance as the slower because it's inital velocity is twice as much. confidence assessment: 1
.................................................
......!!!!!!!!...................................
11:00:49 It turns out that, neglecting air resistance, since the slope is the same for both, both automobiles will change velocity at the same rate. So in this case the second would require exactly twice as long. If you include air resistance the faster car experiences more so it actually takes a bit less than twice as long as the slower. For the same reasons as before, and because velocity would change at a constant rate (neglecting air resistance) it would be exactly twice as great if air resistance is neglected. Interestingly if it takes twice as much time and the average velocity is twice as great the faster car travels four times as far. If there is air resistance then it slows the faster car down more at the beginning than at the end and the average velocity will be a bit less than twice as great and the coasting distance less than four times as far.
......!!!!!!!!...................................
RESPONSE --> I didn't take into account for air resistance. I assumed that the slope would be different for that of the faster car because I assumed th hill would get steeper. It would stop in twice the time and twice the distance, so the faster car would travel a lot farther than double the distance of the slower car. self critique assessment: 2
.................................................
......!!!!!!!!...................................
11:07:54 `q008. When a 100 lb person hangs from a certain bungee cord, the cord stretches by 5 feet beyond its initial unstretched length. When a person weighing 150 lbs hangs from the same cord, the cord is stretched by 9 feet beyond its initial unstretched length. When a person weighing 200 lbs hangs from the same cord, the cord is stretched by 12 feet beyond its initial unstretched length. Based on these figures, would you expect that a person of weight 125 lbs would stretch the cord more or less than 7 feet beyond its initial unstretched length?
......!!!!!!!!...................................
RESPONSE --> 5ft/100lb = .05ft/lb 9ft/150lb = .06ft/lb 12ft/200lb = .06ft.lb average = (.05 + .06 + .06)/3 =.057 125 * .057 = 7.125ft The 125 lb person would stretch the rope farther than 7 feet. confidence assessment: 3
.................................................
......!!!!!!!!...................................
11:08:15 From 100 lbs to 150 lbs the stretch increased by 4 feet, from 150 lbs to 200 lbs the increase was only 3 feet. Thus it appears that at least in the 100 lb - 200 lb rands each additional pound results in less increase in length than the last and that there would be more increase between 100 lb and 125 lb than between 125 lb and 150 lb. This leads to the conclusion that the stretch for 125 lb would be more than halfway from 5 ft to 9 ft, or more than 7 ft. A graph of stretch vs. weight would visually reveal the nature of the nonlinearity of this graph and would also show that the stretch at 125 lb must be more than 7 feet (the graph would be concave downward, or increasing at a decreasing rate, so the midway stretch would be higher than expected by a linear approximation).
......!!!!!!!!...................................
RESPONSE --> OK self critique assessment: 3
.................................................
......!!!!!!!!...................................
11:13:49 `q009. When given a push of 10 pounds, with the push maintained through a distance of 4 feet, a certain ice skater can coast without further effort across level ice for a distance of 30 feet. When given a push of 20 pounds (double the previous push) through the same distance, the skater will be able to coast twice as far, a distance of 60 feet. When given a push of 10 pounds for a distance of 8 feet (twice the previous distance) the skater will again coast a distance of 60 feet. The same skater is now accelerated by a sort of a slingshot consisting of a bungee-type cord slung between two posts in the ice. The cord, as one might expect, exerts greater and greater force as it is pulled back further and further. Assume that the force increases in direct proportion to pullback (ie.g., twice the pullback implies twice the force). When the skater is pulled back 4 feet and released, she travels 20 feet. When she is pulled back 8 feet and released, will she be expected to travel twice as far, more than twice as far or less than twice as far as when she was pulled back 4 feet?
......!!!!!!!!...................................
RESPONSE --> The skater would travel twice as far because the force increase in direct proportion to pullback. Twice the pullback means twice the force. confidence assessment: 2
.................................................
......!!!!!!!!...................................
11:16:09 The distance through which the force acts will be twice as great, which alone would double the distance; because of the doubled pullback and the linear proportionality relationship for the force the average force is also twice as great, which alone would double the distance. So we have to double the doubling; she will go 4 times as far
......!!!!!!!!...................................
RESPONSE --> Oh I see, If we double the pull back it is not only doubling the force but it is doubling the distance. self critique assessment: 2
.................................................
......!!!!!!!!...................................
11:22:06 `q010. Two identical light bulbs are placed at the centers of large and identically frosted glass spheres, one of diameter 1 foot and the other of diameter 2 feet. To a moth seeking light from half a mile away, unable to distinguish the difference in size between the spheres, will the larger sphere appear brighter, dimmer or of the same brightness as the first? To a small moth walking on the surface of the spheres, able to detect from there only the light coming from 1 square inch of the sphere, will the second sphere appear to have the same brightness as the first, twice the brightness of the first, half the brightness of the first, more than twice the brightness of the first, or less than half the brightness of the first?
......!!!!!!!!...................................
RESPONSE --> I believe the larger glass sphere would be dimmer because there is more surface area to dim the light. The second sphere would have half the brightness of the first because there is distance from the light and the sphere. confidence assessment: 1
.................................................
......!!!!!!!!...................................
11:25:23 Both bulbs send out the same energy per second. The surface of the second bulb will indeed be dimmer than the first, as we will see below. However the same total energy per second reaches the eye (identically frosted bulbs will dissipate the same percent of the bulb energy) and from a great distance you can't tell the difference in size, so both will appear the same. The second sphere, while not as bright at its surface because it has proportionally more area, does have the extra area, and that exactly compensates for the difference in brightness. Specifically the brightness at the surface will be 1/4 as great (twice the radius implies 4 times the area which results in 1/4 the illumination at the surface) but there will be 4 times the surface area. Just as a 2' x 2' square has four times the area of a 1' x 1' square, a sphere with twice the diameter will have four times the surface area and will appear 1 / 4 as bright at its surface. Putting it another way, the second sphere distributes the intensity over four times the area, so the light on 1 square inch has only 1 / 4 the illumination.
......!!!!!!!!...................................
RESPONSE --> In the first part of the problem the lights are putting out the same amount of energy so from a distance the moth cant tell them apart. I assumed that the second sphere would have twice the surface area, but I can see in the square example they used this is wrong and it would have four times the surface area. self critique assessment: 2
.................................................
......!!!!!!!!...................................
11:37:33 `q011. The water in a small container is frozen in a freezer until its temperature reaches -20 Celsius. The container is then placed in a microwave oven, which proceeds to deliver energy at a constant rate of 600 Joules per second. After 10 seconds the ice is still solid and its temperature is -1 Celsius. After another 10 seconds a little bit of the cube is melted and the temperature is 0 Celsius. After another minute most of the ice is melted but there is still a good bit of ice left, and the ice and water combination is still at 0 Celsius. After another minute all the ice is melted and the temperature of the water has risen to 40 degrees Celsius. Place the following in order, from the one requiring the least energy to the one requiring the most: Increasing the temperature of the ice by 20 degrees to reach its melting point. Melting the ice at its melting point. Increasing the temperature of the water by 20 degrees after all the ice melted. At what temperature does it appear ice melts, and what is the evidence for your conclusion?
......!!!!!!!!...................................
RESPONSE --> Increasing the temperature of the water by 20 degrees after all the ice melted. Increasing the temperature of the ice by 20 degrees to reach its melting point. Melting the ice at its melting point. Ice appears to melt at 0 degrees celsius because it takes a lot of energy to move the temperature even a small amount. confidence assessment: 1
.................................................
......!!!!!!!!...................................
11:38:08 Since the temperature is the same when a little of the ice is melted as when most of it is melted, melting takes place at this temperature, which is 0 Celsius. The time required to melt the ice is greater than any of the other times so melting at 0 C takes the most energy. Since we don't know how much ice remains unmelted before the final minute, it is impossible to distinguish between the other two quantities, but it turns out that it takes less energy to increase the temperature of ice than of liquid water.
......!!!!!!!!...................................
RESPONSE --> OK self critique assessment: 3
.................................................
......!!!!!!!!...................................
11:49:23 `q012. Suppose you are in the center of a long, narrow swimming pool (e.g., a lap pool). Two friends with kickboards are using them to push waves in your direction. Their pushes are synchronized, and the crests of the waves are six feet apart as they travel toward you, with a 'valley' between each pair of crests. Since your friends are at equal distances from you the crests from both directions always reach you at the same instant, so every time the crests reach you the waves combine to create a larger crest. Similarly when the valleys meet you experience a larger valley, and as a result you bob up and down further than you would if just one person was pushing waves at you. Now if you move a bit closer to one end of the pool the peak from that end will reach you a bit earlier, and the peak from the other end will reach you a little later. So the peaks won't quite be reaching you simultaneously, nor will the valleys, and you won't bob up and down as much. If you move far enough, in fact, the peak from one end will reach you at the same time as the valley from the other end and the peak will 'fll in' the valley, with the result that you won't bob up and down very much. If the peaks of the approaching waves are each 6 inches high, how far would you expect to bob up and down when you are at the center point? How far would you have to move toward one end or the other in order for peaks to meet valleys, placing you in relatively calm water?
......!!!!!!!!...................................
RESPONSE --> I would expect to bob up and down 12 inches because their waves would combine if I'm in the middle of the pool. I would move all the way to one end of the wall because the waves would hit me at different times so the wouldn't be very big. confidence assessment: 1
.................................................
......!!!!!!!!...................................
11:52:14 If the two 6-inch peaks meet and reinforce one another completely, the height of the 'combined' peak will be 6 in + 6 in = 12 in. If for example you move 3 ft closer to one end you move 3 ft further from the other and peaks, which are 6 ft apart, will still be meeting peaks. [ Think of it this way: If you move 3 ft closer to one end you move 3 ft further from the other. This shifts your relative position to the two waves by 6 feet (3 feet closer to the one you're moving toward, 3 feet further from the other). So if you were meeting peaks at the original position, someone at your new position would at the same time be meeting valleys, with two peaks closing in from opposite directions. A short time later the two peaks would meet at that point. ] However if you move 1.5 ft the net 'shift' will be 3 ft and peaks will be meeting valleys so you will be in the calmest water.
......!!!!!!!!...................................
RESPONSE --> I understand, if you move 1.5 ft, the tops of the waves would be meeting the bottoms and the waves would even out, so this would be the calmest water. self critique assessment: 2
................................................."