assignment 13

#$&*

course Mth 158

10/5 1

013. `*   13*********************************************

Question: *   1.5.34 (was 1.5.24). How did you write the interval [0, 1) using an inequality with x? Describe your illustration using the number line.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Originally I just drew the number-line with a bracket at 0 and a parenthesis at 1 and filled in the area between since those were the symbols used in the 'now work problem' videos. But if the dots are actually preferred then I guess I should say there should be a filled in dot at 0 and the open dot at 1

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* *  My notes here show the half-closed interval [0, 1).

 

When sketching the graph you would use a filled dot at x = 0 and an unfilled dot at x = 1, and you would fill in the line from x = 0 to x = 1. **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: *   1.5.40 (was 1.5.30). How did you fill in the blank for 'if x < -4 then x + 4 ____ 0'?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

adding 4 to both sides doesn't change the sign, because x has to equal something less than -4 and adding 4 will still make it less than 0, so if x < -4 then x + 4 < 0

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* *  if x<-4 then x cannot be -4 and x+4 < 0.

 

Algebraically, adding 4 to both sides of x < -4 gives us x + 4 < 0. **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: *   1.5.46 (was 1.5.36). How did you fill in the blank for 'if x > -2 then -4x ____ 8'?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

multiply both sides of x > -2 by -4. multiplying by a negative number will make the sign flip, so you get -4x <8

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * if x> -2 then if we multiply both sides by -4 we get

 

-4x <8.

 

Recall that the inequality sign has to reverse if you multiply or divide by a negative quantity. **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: *   1.5.58 (was 1.5.48). Explain how you solved the inquality 2x + 5 >= 1.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

same way you'd solve a normal equation

2x + 5 >= 1 subtract 5 from both sides

2x>=-4 divide both sides by 2

x>=-2

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* *  Starting with

 

2x+5>= 1 we add -5 to both sides to get

2x>= -4, the divide both sides by 2 to get the solution

 

x >= -2. **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: *   1.5.64 (was 1.5.54). Explain how you solved the inquality 8 - 4(2-x) <= 2x.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

8 - 4(2-x) <= 2x distribute

8-8+4x<= 2x simplify the like terms

4x<=2x subtract 2x from both sides

2x<=0 divide both sides by 2 and get

x<=0

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* *  8- 4(2-x)<= 2x. Using the distributive law:

8-8+4x<= 2x . Simplifying:

4x<=2x . Subtracting 2x from both sides:

2x<=0.  Multiplying both sides by 1/2 we get

x<=-0 **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

????what's with the -0????

@& Probabably a typo, but -0 = 0 so technically the given solution is correct, though the form is substandard.*@

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: *   1.5.76 (was 1.5.66). Explain how you solved the inquality 0 < 1 - 1/3 x < 1.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

0 < 1 - 1/3 x < 1 multiply all three parts by 3 and get

0 < 3 - x < 3 subtract 3 from all parts and get

-3<-x<0 if you multiply all sides by -1 you get

3>x>0 and then could change the order to 0

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* *  Starting with

 

0<1- 1/3x<1 we can separate this into two inequalities, both of which must hold:

0< 1- 1/3x and 1- 1/3x < 1. Subtracting 1 from both sides we get

-1< -1/3x and -1/3x < 0. We solve these inequalitites separately:

 

-1 < -1/3 x can be multiplied by -3 to get 3 > x (multiplication by the negative reverses the direction of the inequality)

 

-1/3 x < 0 can be multiplied by -3 to get x > 0.

 

So our inequality can be written 3 > x > 0. This is not incorrect but we usually write such inequalities from left to right, as they would be seen on a number line. The same inequality is expressed as

 

0 < x < 3. **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: *   1.5.94 (was 1.5.84). Explain how you found a and b for the conditions 'if -3 < x < 3 then a < 1 - 2x < b.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-3 < x < 3 first I act added 3 to all parts so I had 0

-3 < x < 3 all over again and multiplied all sides by -2 to get 6>-2x>-6 then a-1 < - 2x < b-1

I changed the order of the first inequality to -6<-2x<6 then a-1 < - 2x < b-1 so

a=-6-1 and b= 6-1 and we get a=-7 and b=5

but that doesn't seem to be right...

okay going back to where I had 6>-2x>-6 I guess I don't make the other inequality a-1 < - 2x < b-1 and actually leave it as a < 1 - 2x < b? So that's why I add 1 to all parts of 6>-2x>-6 so I get

6+1>-2x+1>-6+1 which is 7>1-2x>-5 then a < 1 - 2x < b so that we get a=7 and b=-5 and therefore

-5 < 1 - 2x < 7

confidence rating #$&*: 3?

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* *  Adding 1 to each expression gives us

 

1 + 6 > 1 - 2x > 1 - 6, which we simplify to get

7 > 1 - 2x > -5. Writing in the more traditional 'left-toright' order:

-5 < 1 - 2x < 7. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: *   1.5.106 (was 1.5.96). Explain how you set up and solved an inequality for the problem. Include your inequality and the reasoning you used to develop the inequality. Problem (note that this statement is for instructor reference; the full statement was in your text) commision $25 + 40% of excess over owner cost; range is $70 to $300 over owner cost. What is range of commission on a sale?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

my gosh. Okay owner cost =x so 70 < x < 300 and 40%*x would be within range? So

.40 * 70 < .40 x < .40 * 300 so you get 28<.4x<120 and then add 25 to all parts to get 53<.4x+25<145

confidence rating #$&*: ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* *  If x = owner cost then

 

70 < x < 300.

 

.40 * owner cost is then in the range

 

.40 * 70 < .40 x < .40 * 300 and $25 + 40% of owner cost is in the range

 

25 + .40 * 70 < 25 + .40 x < 25 + .40 * 300 or

 

25 + 28 < 25 + .40 x < 25 + 120 or

53 < 25 + .40 x < 145. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: *   1.5.123 \ 112. Why does the inequality x^2 + 1 < -5 have no solution?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x^2 + 1 < -5 subtract 1 from both sides

x^2<-6 and x cannot = a negative number because it is squared

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION: x^2 +1 < -5

x^2 < -4

x < sqrt -4

can't take the sqrt of a negative number

 

INSTRUCTOR COMMENT: Good.

 

Alternative: As soon as you got to the step x^2 < -4 you could have stated that there is no such x, since a square can't be negative. **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

 

------------------------------------------------

Self-critique Rating:ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#This looks very good. Let me know if you have any questions. &#