#$&* course Mth 158 10/16 5 Question: * 2.2.34 / 10 (was 2.2.6). Point symmetric to (-1, -1) wrt x axis, y axis, origin.
.............................................
Given Solution: * * There are three points: The point symmetric to (-1, -1) with respect to the x axis is (-1 , 1). The point symmetric to (-1, -1) with respect to the y axis is y axis (1, -1) The point symmetric to (-1, -1) with respect to the origin is ( 1,1). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating: ********************************************* Question: * 2.2.43 / 19 (was 2.2.15). Parabola vertex origin opens to left. **** Give the intercepts of the graph and tell whether the graph is symmetric to the x axis, to the y axis and to the origin. Explain how you determined the answer to each question. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Looking at the graph, the intercepts of both axis are right on (0,0) As for symmetry, if you were to fold it on the x-axis then it would be symmetrical, but it is not on the y-axis. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * The graph intercepts both axes at the same point, (0,0) The graph is symmetric to the x-axis, with every point above the x axis mirrored by its 'reflection' below the x axis. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * 2.2.48 / 24 (was 2.2.20). basic cubic poly arb vert stretch **** Give the intercepts of the graph and tell whether the graph is symmetric to the x axis, to the y axis and to the origin. Explain how you determined the answer to each question. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: It's harder to tell what the intercepts are, but although the line curves to the right, it seems to level off right on top of (0,0) before continuing to increase with a curve to the left. So i'd say the intercept for the x and y axis is (0,0) It is not symmetrical on either the x or the y axis confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The graph s strictly increasing except perhaps at the origin where it might level off for just an instant, in which case the only intercept is at the origin (0, 0). The graph is symmetric with respect to the origin, since for every x we have f(-x) = - f(x). For example, f(2) = 8 and f(-2) = -8. It looks like f(1) = 1 and f(-1) = -1. Whatever number you choose for x, f(-x) = - f(x). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): to be honest I don't really get how to tell whether the origin is symmetric.
.............................................
Given Solution: * * Starting with 4x^2 +y^2 = 1 we find the x intercept by letting y = 0. We get 4x^2 + 0 = 1 so 4x^2 = 1 and x^2=1/4 . Therefore x=1/2 or -1/2 and the x intercepts are (1/2,0) and ( -1/2,0). Starting with 4x^2 +y^2 = 1 we find the y intercept by letting x = 0. We get 0 +y^2 = 1 so y^2 = 1 and y= 1 or -1, giving us y intercepts (0,1) and (0,-1). To test for symmetry about the y axis we substitute -x for x. If there's no change in the equation then the graph will be symmetric to about the y axis. Substituting we get 4 (-x)^2 + y^2 = 1. SInce (-x)^2 = x^2 the result is 4 x^2 + y^2 = 1. This is identical to the original equation so we do have symmetry about the y axis. To test for symmetry about the x axis we substitute -y for y. If there's no change in the equation then the graph will be symmetric to about the x axis. Substituting we get 4 (x)^2 + (-y)^2 = 1. SInce (-y)^2 = y^2 the result is 4 x^2 + y^2 = 1. This is identical to the original equation so we do have symmetry about the x axis. To test for symmetry about the origin we substitute -x for x and -y for y. If there's no change in the equation then the graph will be symmetric to about the origin. Substituting we get 4 (-x)^2 + (-y)^2 = 1. SInce (-x)^2 = x^2 and (-y)^2 - y^2 the result is 4 x^2 + y^2 = 1. This is identical to the original equation so we do have symmetry about the origin. ** STUDENT COMMENT Ok, I see we worked the problem very closely but I’m confused on where the 4x^2 + y^2 = 4 went. INSTRUCTOR RESPONSE: If you let y = 0 the equation becomes 4 x^2 + 0^2 = 1. As you see we then solve for x to obtain the x intercepts. If you let x = 0 the equation becomes 4 * 0^2 + y^2 = 1. As you see we then solve for y to obtain the y intercepts. Symmetry about the y axis means that you find the same y values at -x as you do at x. Symmetry about the x axis means that you find the same x values at -y as you do at y. Symmetry at the origin says that if (x, y) is a point on the graph, so is (-x, -y). The given solution applies these tests. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok... why did you start with 4x^2 +y^2 = 1 instead of 4x^2 + y^2 = 4 ? ------------------------------------------------ Self-critique Rating: ok
.............................................
Given Solution: * * We do not have symmetry about the x or the y axis, but we do have symmetry about the origin: To test for symmetry about the y axis we substitute -x for x. If there's no change in the equation then the graph will be symmetric to about the y axis. }Substituting we get y = ( (-x)^2 - 4) / (2 * (-x) ). SInce (-x)^2 = x^2 the result is y = -(x^2 - 4) / (2 x). This is not identical to the original equation so we do not have symmetry about the y axis. To test for symmetry about the x axis we substitute -y for y. If there's no change in the equation then the graph will be symmetric to about the x axis. Substituting we get -y = (x^2-4)/(2x) , or y = -(x^2-4)/(2x). This is not identical to the original equation so we do not have symmetry about the x axis. To test for symmetry about the origin we substitute -x for x and -y for y. If there's no change in the equation then the graph will be symmetric to about the origin. Substituting we get -y = ((-x)^2-4)/(2(-x)) SInce (-x)^2 = x^2 the result is -y = -(x^2-4)/(2x), or multiplying both sides by -1, our result is y = (x^2-4)/(2x). This is identical to the original equation so we do have symmetry about the origin. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!