assignment 18

#$&*

course Mth 158

10/26 5

018. `*   18*********************************************

Question: *   2.3.34 / 30 (was 2.3.24). Slope 4/3, point (-3,2)

 

Give the three points you found on this line and explain how you obtained them.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

ok, starting with the points (-3,2) you use the slope to find other points. rise/run is 4/3 or delta-y/delta-x so -3+3=0 and 2+4=6 and you have the points (0,6)

using the same original points and the slope you can subtract rise and run to get -3-3=-6 and 2-4=-2 and you get the points (-6,-2)

from either of those points you can do the same thing, but I'll stick with positive numbers. So you have 0+3=3 and 6+4=10, getting the points (3,10)

graph a line with the points (0,6), (-6,-2), (3,10) you get a positive line, rising to the right.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION:

 

(-3,2) slope 4/3. Move 3 units in the x direction, 4 in the y direction to get

((-3+3), (2+4)), which simplifies to

(0,6)

 

(-3,2) slope 4/3 = -4/-3 so move -3 units in the x direction and -4 in the y direction to get

((-3-3), (2-4)) which simplifies to

(-6,-2)

 

From (0,6) with slope 4/3 we move 4 units in the y direction and 3 in the x direction to get

((0+3), (6+4)), which simplifies to

(3,10). The three points I obtained are

 

(-6,-2), (0,6), (3,10).

 

*   2.3.40 / 36 (was 2.3.30). Line thru (-1,1) and (2,2) **** Give the equation of the line and explain how you found the equation.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

using (y2-y1)/(x2-x1)=m you have (2-1)/(2- -1) = 1/3 then you have the formula y - y1 = m (x - x1) and you can plug in the slope and coordinates to get y-1=1/3(x- (-1))

y-1=1/3x+1 add 1 to both sides and you get y=1/3x+2

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION: The slope is m = (y2 - y1) / (x2 - x1) = (2-1)/(2- -1) = 1/3.

 

Point-slope form gives us

 

y - y1 = m (x - x1); using m = 1/3 and (x1, y1) = (-1, 1) we get

 

y-1=1/3(x+1), which can be solved for y to obtain

 

y = 1/3 x + 4/3.

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I don't understand where you got 4/3

------------------------------------------------

Self-critique Rating:ok

@& When you simplified

y-1=1/3(x- (-1))

you didn't distribute the multiplcation by 1/3 through the expression (x - (-1)).

If you do you'll get to the 4/3.

*@

*********************************************

Question: *   2.3.54 / 46 (was 2.3.40). x-int -4, y-int 4 * * ** What is the equation of the line through the given points and how did you find the equation?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

slope is (0,4)/(4,0)=m So 4/4=m or 4/4=1

the slope-intercept form is y=mx+b (b=x-intercept) so y=1x+4 or y=x+4

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION: The two points are (0, 4) and (4, 0). The slope is therefore m=rise / run = (4-0)/(0+4) = 1.

 

The slope-intercept form is therefore y = m x + b = 1 x + 4, simplifying to

 

y=x+4.

 

STUDENT QUESTION

 

I obtained

 

-x + y = 4 or y = x + 4.

 

I followed the example in the book which leaves 2 solutions (example problem 2.3.51) Did I do it correctly?

INSTRUCTOR RESPONSE

 

Both your solutions represent the same line, and both are correct.

y = 1x + 4 means the same thing as y = x + 4; we rearrange this to -x + y = 4 (just subtract x from both sides).

-x + y = 4 is a 'standard form' of the equation of this line.

y = x + 4 is the 'slope-intercept' form of the equation.

You don't need to know this, but still another 'standard form' is obtained by subtracting 4 from both sides of the equation -x + y = 4, giving us

 

-x + y - 4 = 0.

 

In this form we often want the coefficient of x to be positive, so we multiply both sides by -1 to get

x - y + 4 = 0.

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: *   2.3.76 / 56 (was 2.4.48). y = 2x + 1/2. **** What are the slope and the y-intercept of your line and how did you find them?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

for the y-int let x=0 and you get y = 2 (0) + ½ which simplifies to y=1/2 so the y intercept is (0,1/2) and in the form y=mx+b, m=slope so the slope is 2

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* *  the y intercept occurs where x = 0, which happens when y = 2 (0) + 1/2 or y = 1/2. So the y-intercept is (0, 1/2).

 

The slope is m = 2.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: ok

*********************************************

Question: *   2.3.62 / 22 (was 2.4.18) Parallel to x - 2 y = -5 containing (0,0) **** Give your equation for the requested line and explain how you obtained it.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

rewrite x - 2 y = -5

-2y=-x-5

y=(-x-5)-2

y= 1/2x +5/2 the slope is ½ and the coordinates given for the parallel line are (0,0) you can use point-slope formula to get y-0=1/2(x-0) which becomes y=1/2x

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* *  The equation x - 2y = -5 can be solved for y to give us

y = 1/2 x + 5/2.

 

A line parallel to this will therefore have slope 1/2.

 

Point-slope form gives us

 

y - 0 = 1/2 * (x - 0) or just

y = 1/2 x. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: *   2.3.68 / 28 (was 2.4.24) Perpendicular to x - 2 y = -5 containing (0,4) **** Give your equation for the requested line and explain how you obtained it.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x - 2 y = -5 again

y = 1/2 x + 5/2 but a perpendicular line will have a slope that is opposite to the original equation's so it will be -2/1 or just -2

point-slope form. y-4=-2(x-0) or y=-2x+4

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* *  The equation x - 2y = -5 can be solved for y to give us

y = 1/2 x + 5/2.

 

A line perpendicular to this will therefore have slope -2/1 = -2.

 

Point-slope form gives us

 

y - 4 = -2 * (x - 0) or

y = -2 x + 4. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#This looks good. See my notes. Let me know if you have any questions. &#