assignment 30

#$&*

course Mth 158

11-20 8

0. *   30*********************************************

Question: *  4.3.42 (4.1.42 7th edition) (was 4.1.30). Describe the graph of f(x)= x^2-2x-3 as instructed.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a=1, b=-2, c=-3

first of all, the parabola opens up because a>0 or x^2>0

The x coordinate of vertex is found by -b/(2a) so -(-2)/(2*1)= 1 and the y is found by saying y=f(1)=1^2-2(1)-3

1-2-3= -4

so the vertex is at (1,-4)

y-int means letting x=0 so f(0)=0^2-2(0)-3 = -3

x-int means letting y=0 so 0=x^2-2x-3= (x-3)(x+1)=0 so x=3 or -1

Domain is (-infinity, infinity)

Range is (infinity, -4)

Increasing from -4 to infinity

decreasing from infinity to -4

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The function is of the form y = a x^2 + b x + c with a = 1, b = -2 and c = -3.

 

The graph of this quadratic function will open upwards, since a > 0.

 

The axis of symmetry is the line x = -b / (2 a) = -(-2) / (2 * 1) = 1. The vertex is on this line at y = f(1) = 1^2 - 2 * 1 - 3 = -4. So the the vertex is at the point (1, -4).

 

The x intercepts occur where f(x) = x^2 - 2 x - 3 = 0. We can find the values of x by either factoring or by using the quadratic formula. Here will will factor to get

 

(x - 3) ( x + 1) = 0 so that

x - 3 = 0 OR x + 1 = 0, giving us

x = 3 OR x = -1.

 

So the x intercepts are (-1, 0) and (3, 0).

 

The y intercept occurs when x = 0, giving us y = f(0) = -3. The y intercept is the point (0, -3).

 

The function can be evaluated for any real number x, so its domain is the set of all real numbers.

 

The graph is a parabola opening upward, with vertex (1, -4). So the lowest possible y value is -4, and all values greater than -4 will occur. So the range is y > -4.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: *  4.3.57. graph of parabola vertex (1, -3), point (3, 5)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(y-k)=a(x-h)^2

the coordinates of the vertex are (1,-3) so you plug in

(y-(-3)=a(x-1)^2

the line also contains the coordinates (3,5) so plug those in as well to get

(5-(-3)=a (3-1)^2

8=4a

a=2

so the equation is y-(-3)=2(x-1)^2 or

y=2(x-1)^2-3

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The graph is a parabola with vertex (1, -3), so it has form {}{}(y - k) = a ( x - h)^2, with h = 1 and k = -3. Thus we have{}{}y - (-3) = a (x - 1)^2, {}{}and the only unknown is a. To find a we substitute the coordinates of (3, 5) for x and y, obtaining the equation(5 - (-3)) = a ( 3 - 1)^2, or{}(5 + 3) = a * 2^2, or{}8 = a * 4, with the obvious solution{}a = 2.{}{}Thus the equation of the parabola is{}{}y + 3 = 2 ( x - 1)^2.

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: *  Extra Problem (4.1.67 7th edition) (was 4.1.50). What are your quadratic functions whose x intercepts are -5 and 3, for the values a=1; a=2; a=-2; a=5?

 

Since (x+5) = 0 when x = -5 and (x - 3) = 0 when x = 3, the quadratic function will be a multiple of (x+5)(x-3).

 

If a = 1 the function is 1(x+5)(x-3) = x^2 + 2 x - 15.

If a = 2 the function is 2(x+5)(x-3) = 2 x^2 + 4 x - 30.

If a = -2 the function is -2(x+5)(x-3) = -2 x^2 -4 x + 30.

If a = 5 the function is 5(x+5)(x-3) = 5 x^2 + 10 x - 75.

 

Does the value of a affect the location of the vertex?

 

In every case the vertex, which lies at -b / (2a), will be on the line x = -1. The value of a does not affect the x coordinate of the vertex, which lies halfway between the zeros at (-5 + 3) / 2 = -1.

 

The y coordinate of the vertex does depend on a. Substituting x = -1 we obtain the following:

 

For a = 1, we get 1 ( 1 + 5) ( 1 - 3) = -12.

For a = 2, we get 2 ( 1 + 5) ( 1 - 3) = -24.

For a = -2, we get -2 ( 1 + 5) ( 1 - 3) = 24.

For a = 5, we get 5 ( 1 + 5) ( 1 - 3) = -60.

 

So the vertices are (-1, -12), (-1, -24), (-1, 24) and (-1, -60).

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:ok

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#This looks very good. Let me know if you have any questions. &#