#$&* course Mth 158 12/14 2 038. * 38*********************************************
.............................................
Given Solution: * * log{base 3}(8) * log{base 8}(9) = log 8 / log 3 * log 9 / log 8 = log 9 / log 3 = log{base 3}(9). log{base 3}(9) is the power to which 3 must be raised to get 9, and is therefore equal to 2. Thus log{base 3}(8) * log{base 8}(9) = 2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * 6.5.24 / 7th edition 5.5.24. ln(2) = a, ln(3) = b. What is ln(2/3) in terms of a and b? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: log(base a)(m/n) = log(base a)M- log(base a)n ln(2/3)= ln(2)- ln(3)= a-b confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * ln(2/3) = ln(2) - ln(3) = a - b. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * 6.5.26 / 7th edition 5.5.26. ln(0.5) in terms of a and b. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ln(.5)= ln(1/2) =ln(1)- ln(2) = 0-a=-a confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * Since ln(2) = a, and since ln(1) = 0, we have ln(.5) = ln(1/2) = ln(1) - ln(2) = 0 - a = -a. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * 6.5.52 / 7th edition 5.5.52. log{base 3}(u^2) - log{base 3}(v) as a single log. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ln(a)-ln(b)=ln(a/b) so ln(a)=log{base 3}(u^2) and ln(b)=log{base 3}(v) you have log{base 3}(u^2/v) confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * log{base 3}(u^2) - log{base 3}(v) = log{base 3}(u^2 / v). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * 6.5.58 / 7th edition 5.5.68. Using a calculator express log{base1 / 2}(15) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 1/2^y=15 is log{base1 / 2}(15) log(1/2^y)=log(15) y*log(1/2)=log(15) y=log(15)/log(1/2) y= -3.906890596 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * We get log{base 1/2}(15) = log(15) / log(1/2) = 1.176091259 / )-0.3010299956) = -3.906890595. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * 6.5.82 / 7th edition 5.5.80. Express y as a function of x if ln y = ln(x + C). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y=log(base a)(x) means x=a^y but x(ln(b) means e^x=b ln(y) = ln(x + C) means (x+C)=e^y confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * a = ln(b) means e^a = b, so y = ln(x+c) is translated to exponential form as (x+c) = e^y. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: ok" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ok" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!