Assignment 10

course 152

......!!!!!!!!................................... 21:15:38

Your work has been received. Please scroll through the document to see any inserted notes (inserted at the appropriate place in the document, in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

`q001. Note that there are 9 questions in this assignment.

In a certain lottery the probability of winning $100 is .005, the probability of winning $1000 is .0002 and the probability of winning $10,000 is .00001. Otherwise you win nothing.

What is the probability of winning nothing?

......!!!!!!!!...................................

RESPONSE -->

5 out of 100

2 out of 1000

1 out of 10,000

totals: 8 out of 11,100

5/100 = 1/20

2/1000 = 1/500

1/10,000 = 1/10,000

5% chance to win $100

.02% chance to win $1000

.001% chance to win $10,000

.................................................

......!!!!!!!!...................................

21:15:47

The probability of winning something is the sum .005 + .0002 + .00001 =.00521.

The events of winning something and winning nothing are mutually exclusive, and they comprise all possible outcomes. It follows that the probability of winning something added to the probability winning nothing must give us 1, and that therefore

Probability of winning nothing = 1 - .00521 = .99479.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:16:37

`q002. In the same lottery , where the probability of winning $100 is .005, the probability of winning $1000 is .0002 and the probability of winning $10,000 is .00001, if you bought a million tickets how many would you expect to win the $100 prize?

How many would you expect to win the $1000 prize?

How many would you expect to win the $10,000 prize?

......!!!!!!!!...................................

RESPONSE -->

5 to win $100

2 to win $1000

1 to win $10,000

.................................................

......!!!!!!!!...................................

21:17:08

The probability of winning the $100 prize is.005, so out of a million tries we would expect to win the $100 a total of .005 * 1,000,000 = 5,000 times.

Similarly we would expect to win the $1000 prize a total of .0002 * 1,000,000 = 200 times.

The expected number of times we would win the $10,000 prize would be .00001 * 1,000,000 = 10.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:18:18

`q003. In the lottery of the preceding problem, if you were given a million tickets how much total money would you expect to win?

......!!!!!!!!...................................

RESPONSE -->

$100 (1,000,000 * .5%) = $50,000

$1,000 (1,000,000 * .02%) = $200,000

$10,000 (1,000,000 * .001%) = $100,000

.................................................

......!!!!!!!!...................................

21:18:22

As seen in preceding problem, you would expect to win $100 a total of 5,000 times for a total of $500,000, you would expect to win the $1000 prize 200 times for a total of $200,000, and you expect to win the $10,000 prize 10 times for total of $100,000.

The expected winnings from a million tickets would therefore be the total $800,000 of these winnings.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:18:44

`q004. In the lottery of the preceding problem, if you bought a million tickets for half a million dollars would you most likely come out ahead?

......!!!!!!!!...................................

RESPONSE -->

yes

.................................................

......!!!!!!!!...................................

21:18:48

You would expect on the average to win $800,000, and your probability of winning at least $500,000 would seem to be high. You would have a very good expectation of coming out ahead.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:19:39

`q005. In the lottery of the preceding problem, how much would you expect to win, per ticket, if you bought a million tickets? Would the answer change if you bought 10 million tickets?

......!!!!!!!!...................................

RESPONSE -->

$100 (.5%) = $.50

$1000 (.02%) = $.20

$10,000 (.001%) = $.10

.................................................

......!!!!!!!!...................................

21:19:41

Your expected winnings would be $800,000 on a million tickets, which would average out to $800,000/1,000,000 = $.80, or 80 cents.

If you bought 10 million tickets you expect to win 10 times as much, or $8,000,000 for an average of $8,000,000 / 10,000,000 = $.80, or 80 cents.

The expected average wouldn't change. However you might feel more confident that your average winnings would be pretty close to 80 cents if you have 10 million chances that if you had 1 million chances.

......!!!!!!!!...................................

RESPONSE -->

.................................................

?????????p????v?Student Name:

assignment #008

.................................................

......!!!!!!!!...................................

21:36:25

`q001. Note that there are 7 questions in this assignment.

Suppose that a card is dealt from a well-shuffled deck, and that you can tell by the reflection in your opponent's reading glasses that the card is a red face card. However you can't tell any more than that.

What is the probability that the card is the Jack or the Queen of Diamonds?

......!!!!!!!!...................................

RESPONSE -->

C(26,2) = 325 possible combos of red cards

C(6,2) = 15 possible combos of red face cards

15 / 325 = 3 / 65 probability card is Jack or Queen of diamonds

.................................................

......!!!!!!!!...................................

21:36:27

In this case your knowledge that the card is a red face card limits the possibilities to six: The Jack of Hearts or Diamonds, the Queen of Hearts or Diamonds, or the King of Hearts or Diamonds. The probability that the card is one of the two specified cards is therefore 2 / 6 = 1/3.

Note that without any limits on the possibilities, the probability that the card is the Jack or Queen of Diamonds is only 2 / 52 = 1 / 26. Note also that the probability that a card is a red face card is 6 / 52 = 3/26. If we divide the first probability by the second we get 1/26 / ( 3/26) = 1/26 * 26/3 = 1/3.

Thus the probability that a card is the Jack or Queen of Diamonds, given that it is a red face card, is equal to the probability that it is the Jack or Queen of Diamonds (and a face card), divided by the probability that it is a red face card.

This statement has the form 'The probability of B, given A, is equal to the probability of A ^ B divided by the probability of A'. This statement is abbreviated to the form

P(B | A) = P(A ^ B) / P(A).

This is the formula for Conditional Probability. In this problem the outcome was Jack or Queen of Diamonds, and the condition was that we have a red face card.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:36:44

`q002. Suppose that a face card is the first card dealt from a full deck of well-shuffled cards. What is the probability that the next card dealt (without replacement) will also be a face card?

......!!!!!!!!...................................

RESPONSE -->

C(51,11)

.................................................

......!!!!!!!!...................................

21:36:47

We know that after the first card is dealt there are 11 face cards left out of the original 12, and 51 cards left in the deck. The probability is therefore obviously 11/51.

We can also analyze this situation as a conditional probability. B stands for 'a face card is dealt on the second card' while A stands for 'a face card is dealt on the first card'. So the event A ^ B stands for 'a face card is dealt on the first card and on the second', with probability 12/52 * 11/51. A stands for 'a face card is dealt on the first card', with probability 12 / 52. So P(B | A) stands for 'a face card is deal on the second card given that a face card is dealt on the first'.

By the formula we have P(B | A) = P ( A ^ B ) / P(A) = [ 12 / 52 * 11 / 51 ] / [ 12 / 52 ] = 11 / 51, which of course we already knew from direct analysis.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:37:01

`q003. Given that the first clip of a coin is Heads, what is the probability that a five-flip sequence will result in exactly four Heads?

......!!!!!!!!...................................

RESPONSE -->

C(8,4) / C(10,5) = 70 / 252 = 35 / 126 = 5 /18

.................................................

......!!!!!!!!...................................

21:37:02

If we were to list the 2^5 = 32 possible outcomes for five flips, we would find that 16 of them have 'heads' on the first flip, and that of these 16 there are 4 outcomes with exactly four 'heads'. The probability therefore looks like 4 / 16 = 1/4, which is correct.

To verify this by the formula P( B | A ) = P( A ^ B) / P(A), we let B stand for the desired event of exactly four 'heads' and A for the 'given' event of 'heads' on the first flip. On five flips, P(A) = 16 / 32 = 1/2 (probability of 'heads' on the first flip), which P(B ^ A) = 4 / 32 (four of the 32 possible outcomes have 'heads' on the first flip and exactly four 'heads').

The formula therefore gives us P( B | A ) = P( A ^ B) / P(A) = (4/32) / (2/1) = (4 / 32) * (2 / 1) = 4 / 16 = 1/4.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:37:16

`q004. Given that the first of two dice comes up even, what is the probability that the total on the two dice will be greater than 9? How does this compare with the unconditional probability that the total of two fair dice will be greater than 9?

......!!!!!!!!...................................

RESPONSE -->

1 in 33 chance two fair die is greater than 9

.................................................

......!!!!!!!!...................................

21:37:17

We can list the sample space of dice possibilities for which the first number is even. The sample space is { (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) }. We note that there are 18 elements in the sample space.

We then find the corresponding totals, which are

3, 4, 5, 6, 7, 8

5, 6, 7, 8, 9, 10

7, 8, 9, 10, 11, 12.

Of these 18 totals, 4 are greater than 9. Thus the probability that the total of two dice will be greater than 9, given that the first is even, is 4/18 = 2/9.

To verify this by the formula P( B | A ) = P( A ^ B) / P(A), we let B stand for the set of all dice pairs which give a total greater than 9, and A for the set of all dice pairs where the first die shows an even number. We have seen that A = { (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6) }.

Listing the elements in B we find that B = { (4, 6), (6, 4), (5, 5), (6, 5), (5, 6), (6, 6) }. There are 6 elements in this set.

A ^ B consists of the set of elements common to both A and B, or { (4, 6), (6, 4), (6,5), (6, 6) }.

Since there are 4 elements in A ^ B, 18 elements in A, and 36 elements in the sample space for two dice, it follows that

P(A) = 18 / 36 = 1/2 and P(A ^ B) = 4 / 36 = 1/9.

Therefore the probability we are looking for, P(B | A), is given by

P(B | A) = P(A ^ B) / P(A) = (1/9) / (1/2) = (1/9) * (2/1) = 2/9.

This is in agreement with the previous result obtained by listing.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:37:31

`q005. A spinner has numbers 2, 3, 4, 5 and 6. Given that the first number is odd, what is the probability that the sum of the results on two consecutive spins is even?

......!!!!!!!!...................................

RESPONSE -->

C (5,2) / C(6,2) = 10 / 15 = 2/3 = 66%

.................................................

......!!!!!!!!...................................

21:37:33

The set of possibilities for which the first number is odd is { (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6) }. There are therefore 10 possibilities. Of these 4 add up to an even total, so the probability that the total is even, given that the first number is odd, is

Probability of B given A = 4/10 = 2/5.

To verify this by the formula P( B | A ) = P( A ^ B) / P(A), we let B stand for the set of all pairs that add up to an even number and A for the set of all pairs for which the first number is even. The sample space for two spins has 5 * 5 = 25 elements. Of these, only the four outcomes (3, 3), (3, 5), (5, 3) and (5, 5) for which both spinners land on odd numbers are in the set A ^ B. Thus

P(A | B) = 4/25.

The set A consists of the 10 pairs listed earlier. So

P(A) = 10/25 = 2/5.

Thus

P(B | A) = P(A ^ B) / P(A) = (4/25) / (2/5) = (4/25) * (5/2) = 2/5

in agreement with our previous result.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:38:49

`q006. If we multiply $100 by the probability of winning $100, $1000 by the probability of winning $1000, and $10,000 by the probability of winning $10,000, then add all these results, what is the sum?

How does this result compare with the results obtained on previous problems, and why?

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:38:52

We get $100 * .005 + $1,000 * .0002 + $10,000 * .00001 = $.50 + $.20 + $.10 = $.80.

This is the same as the average per ticket we calculated for a million tickets, or for 10 million tickets. This seems to indicate that a .005 chance of winning $100 is worth 50 cents, a .0002 chance of winning $1,000 is worth 20 cents, and a .00001 chance of winning $10,000 is worth 10 cents.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:39:53

`q007. The following list of random digits has 10 rows and 10 columns:

3 8 4 7 2 3 0 8 3 9

1 8 3 7 3 2 9 1 0 3

4 3 3 0 2 1 4 9 8 2

4 3 4 9 9 2 0 1 3 9

8 3 4 1 3 0 5 3 9 7

2 4 7 4 5 3 7 2 1 8

3 6 9 0 2 5 9 5 2 3

4 5 8 5 8 8 2 9 8 5

9 3 4 6 7 4 5 8 4 9

4 1 5 7 9 2 9 3 1 2.

Starting in the second column and working down the column, if we let even numbers stand for 'heads' and odd numbers for 'tails', then how many 'heads' and how many 'tails' would we end up with in the first eight flips?

Answer the second question but starting in the fifth row and working across the row.

Answer once more but starting in the first row, with the second number, and moving diagonally one space down and one to the right for each new number.

......!!!!!!!!...................................

RESPONSE -->

hhttthht

h = 4

t = 4

.................................................

......!!!!!!!!...................................

21:41:42

Using the second column, the first eight flips would be represented by the numbers in the second column, which are 8, 8, 3, 3, 3, 4, 6, and 5. According to the given rule this correspond to HHTTTHHT, total of four 'heads' and four 'tails'.

Using the fifth row we have the numbers 8 3 4 1 3 0 5 3, which according to the even-odd rule would give us HTHTTHTT, or 3 'heads' and 5 'tails'.

Using the diagonal scheme we get 8, 3, 0, 9, 0, 7, 5, 8 for HTHTHTTH, a total of four 'heads' and four 'tails'.

......!!!!!!!!...................................

RESPONSE -->

I got ahead of myself and didn't read the whole question. Why is the number '0' heads and not tails?

0 is an even number, and we arbitrarily chose to let even numbers stand for 'heads'.

.................................................

......!!!!!!!!...................................

21:41:44

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:51:41

`q008. Using once more the table

3 8 4 7 2 3 0 8 3 9

1 8 3 7 3 2 9 1 0 3

4 3 3 0 2 1 4 9 8 2

4 3 4 9 9 2 0 1 3 9

8 3 4 1 3 0 5 3 9 7

2 4 7 4 5 3 7 2 1 8

3 6 9 0 2 5 9 5 2 3

4 5 8 5 8 8 2 9 8 5

9 3 4 6 7 4 5 8 4 9

4 1 5 7 9 2 9 3 1 2

let the each of numbers 1, 2, 3, 4, 5, 6 stand for rolling that number on a die-e.g., if we encounter 3 in our table we let it stand for rolling a 3. If any other number is encountered it is ignored and we move to the next.

Starting in the fourth column and working down, then moving to the fifth column, etc., what are the numbers of the first 20 dice rolls we simulate?

If we pair the first and the second rolls, what is the total?

If we pair the third and fourth rolls, what is the total?

If we continue in this way what are the 10 totals we obtain?

......!!!!!!!!...................................

RESPONSE -->

1 4 5 6 2 3 2 3 5 2 3 2 1 2 3 5 4 2 4 5

first row: 3 4 2 3 3 = 15

second row: 1 3 3 2 1 3 = 13

third row: 4 3 3 2 1 4 2 = 19

fourth row: 4 3 4 2 1 3 = 17

fifth row: 3 4 1 3 5 3 = 19

sixth row: 2 4 4 5 3 2 1 = 21

seventh row: 3 6 2 5 5 2 3 = 26

eighth row: 4 5 5 2 5 = 21

ninth row: 3 4 6 4 5 4 = 26

tenth row: 4 1 5 2 3 1 2 = 18

.................................................

......!!!!!!!!...................................

21:51:43

The numbers we get in the fourth column are 7, 7, 0, 9, 1, 4, 0, 5, 6, 7, then in the fifth column we get 2, 3, 2, 9, 3, 5, 2, 8, 7, 9 and in the sixth column we get 3, 2, 1, 2, 0, 3, 5, 8, 4, 2. We hope to get 20 numbers between 1 and 6 from this list of 30 numbers, but we can be sure that this will be the case. If it is, we will add some numbers from the seventh column.

Omitting any number on our current list not between 1 and 6 we get 1, 4, 5, 6 from the fourth column, then from the fifth column we get 2, 3, 2, 3, 5, 2 and from the sixth column we get 3, 2, 1, 2, 3, 5, 4, 2. This gives us only 18 numbers between 1 and 6, and we need 20. So we go to the seventh column, which starts with 0, 9, 4, 0, 5. The first number we encounter between 1 6 is 4. The next is 5. This completes our list.

Our simulation therefore gives us the list 1, 4, 5, 6, 2, 3, 2, 3, 5, 2, 3, 2, 1, 2, 3, 5, 4, 2, 4, 5. This list represents a simulated experiment in which we row of a fair die 20 times.

The first and second rolls were 1 and 4, which add up to 5.{}

The second and third rolls were 5 and 6, which add up to 11.

The remaining rolls give us 2 + 3 = 5, 2 + 3 = 5, 5 + 2 = 7, 3 + 2 = 5, 1 + 2 = 3, 3 + 5 = 8, 4 + 2 = 6, and 4 + 5 = 10.

The totals we obtain our therefore 5, 11, 5, 5, 7, 5, 3, 8, 6, and 10.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

21:52:16

`q009. According to the results of the preceding question, what proportion of the totals were 5, 6, or 7?

How do these proportions compare to the expected proportions?

......!!!!!!!!...................................

RESPONSE -->

5s = 13

6s = 3

7s = 0

.................................................

......!!!!!!!!...................................

21:52:18

We obtain four 5's, one 6 and one 7. Thus 6 of our 10 results were 5, 6 or 7.

We saw earlier that of the 36 possible outcomes of rolling two dice, four give us a total of 5, while five give us a total of 6 and six give the total of 7. If we add these numbers we see that 15 of the 36 possible outcomes in the sample space are 5, 6 or 7 for probability 15/36. Our simulation results in 6/10, a higher proportion than the probabilities would lead us to expect. However since the simulation resulted from random numbers it is certainly possible that this will happen, just as it is possible that if we rolled two dice 10 times 7 of the outcomes would be in this range.

......!!!!!!!!...................................

RESPONSE -->

.................................................

"

See my note in reponse to your question.

Be sure you understand all the given solutions. Let me know if you have questions.