init probs

Your work on the liberal arts mathematics problems looks good. Do see my notes about self-critique on the typewriter notation problems..

.................................................

Ot擉Sܭg Student Name: assignment #001 001. typewriter notation

......!!!!!!!!...................................

20:22:06 `q001. Explain the difference between x - 2 / x + 4 and (x - 2) / (x + 4).

......!!!!!!!!...................................

RESPONSE --> Because of the () that communicates that those operations must be completed first before ? dividing

.................................................

......!!!!!!!!...................................

20:22:21 The order of operations dictates that grouped expressions must be evaluated first, that exponentiation must be done before multiplication or division, which must be done before addition or subtraction.

It makes a big difference whether you subtract the 2 from the 2 or divide the -2 by 4 first. If there are no parentheses you have to divide before you subtract:

2 - 2 / 2 + 4 = 2 - 1 + 4 (do multiplications and divisions before additions and subtractions) = 5 (add and subtract in indicated order)

If there are parentheses you evaluate the grouped expressions first:

(x - 2) / (x - 4) = (2 - 2) / ( 4 - 2) = 0 / 2 = 0.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

20:27:12 `q002. Explain the difference between 2 ^ x + 4 and 2 ^ (x + 4). Then evaluate each expression for x = 2.

Note that a ^ b means to raise a to the b power. This process is called exponentiation, and the ^ symbol is used on most calculators, and in most computer algebra systems, to represent exponentiation.

......!!!!!!!!...................................

RESPONSE --> 2 ^ x + 4 dictates that only the 2 is to be raise by x powers then increased by 4. 2 ^ (x + 4) means that 2 is raised by x+4

.................................................

......!!!!!!!!...................................

20:27:46 2 ^ x + 4 indicates that you are to raise 2 to the x power before adding the 4.

2 ^ (x + 4) indicates that you are to first evaluate x + 4, then raise 2 to this power.

If x = 2, then

2 ^ x + 4 = 2 ^ 2 + 4 = 2 * 2 + 4 = 4 + 4 = 8.

and

2 ^ (x + 4) = 2 ^ (2 + 4) = 2 ^ 6 = 2*2*2*2*2*2 = 64.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

20:31:34 `q003. What is the numerator of the fraction in the expression x - 3 / [ (2x-5)^2 * 3x + 1 ] - 2 + 7x? What is the denominator? What do you get when you evaluate the expression for x = 2?

......!!!!!!!!...................................

RESPONSE --> num x - 3, denom [ (2x-5)^2 * 3x + 1 ] - 2 + 7x. 1/9

.................................................

......!!!!!!!!...................................

20:32:06 The numerator is 3. x isn't part of the fraction. / indicates division, which must always precede subtraction. Only the 3 is divided by [ (2x-5)^2 * 3x + 1 ] and only [ (2x-5)^2 * 3x + 1 ] divides 3.

If we mean (x - 3) / [ (2x-5)^2 * 3x + 1 ] - 2 + 7x we have to write it that way.

The preceding comments show that the denominator is [ (2x-5)^2 * 3x + 1 ]

Evaluating the expression for x = 2:

- 3 / [ (2 * 2 - 5)^2 * 3(2) + 1 ] - 2 + 7*2 =

2 - 3 / [ (4 - 5)^2 * 6 + 1 ] - 2 + 14 = evaluate in parenthese; do multiplications outside parentheses

2 - 3 / [ (-1)^2 * 6 + 1 ] -2 + 14 = add inside parentheses

2 - 3 / [ 1 * 6 + 1 ] - 2 + 14 = exponentiate in bracketed term;

2 - 3 / 7 - 2 + 14 = evaluate in brackets

13 4/7 or 95/7 or about 13.57 add and subtract in order.

The details of the calculation 2 - 3 / 7 - 2 + 14:

Since multiplication precedes addition or subtraction the 3/7 must be done first, making 3/7 a fraction. Changing the order of the terms we have

2 - 2 + 14 - 3 / 7 = 14 - 3/7 = 98/7 - 3/7 = 95/7.

......!!!!!!!!...................................

RESPONSE --> ok

Your response did not agree with the given solution in all details, and you should therefore have addressed the discrepancy with a full self-critique, detailing the discrepancy and demonstrating exactly what you do and do not understand about the given solution, and if necessary asking specific questions.

.................................................

......!!!!!!!!...................................

20:32:06 The numerator is 3. x isn't part of the fraction. / indicates division, which must always precede subtraction. Only the 3 is divided by [ (2x-5)^2 * 3x + 1 ] and only [ (2x-5)^2 * 3x + 1 ] divides 3.

If we mean (x - 3) / [ (2x-5)^2 * 3x + 1 ] - 2 + 7x we have to write it that way.

The preceding comments show that the denominator is [ (2x-5)^2 * 3x + 1 ]

Evaluating the expression for x = 2:

- 3 / [ (2 * 2 - 5)^2 * 3(2) + 1 ] - 2 + 7*2 =

2 - 3 / [ (4 - 5)^2 * 6 + 1 ] - 2 + 14 = evaluate in parenthese; do multiplications outside parentheses

2 - 3 / [ (-1)^2 * 6 + 1 ] -2 + 14 = add inside parentheses

2 - 3 / [ 1 * 6 + 1 ] - 2 + 14 = exponentiate in bracketed term;

2 - 3 / 7 - 2 + 14 = evaluate in brackets

13 4/7 or 95/7 or about 13.57 add and subtract in order.

The details of the calculation 2 - 3 / 7 - 2 + 14:

Since multiplication precedes addition or subtraction the 3/7 must be done first, making 3/7 a fraction. Changing the order of the terms we have

2 - 2 + 14 - 3 / 7 = 14 - 3/7 = 98/7 - 3/7 = 95/7.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

20:32:30 09-18-2005 20:32:30 `q004. Explain, step by step, how you evaluate the expression (x - 5) ^ 2x-1 + 3 / x-2 for x = 4.

......!!!!!!!!...................................

NOTES ------->

You need to respond and self-critique.

.................................................Hܶ|dؚxS}

Student Name: assignment #004 004. Liberal Arts Mathematics

......!!!!!!!!...................................

20:38:52 `q001. Consider the statement 'If that group of six-year-olds doesn't have adult supervision, they won't act in an orderly manner.' Under which of the following circumstances would everyone have to agree that the statement is false?

The group does have supervision and they do act in an orderly manner.

The group doesn't have supervision and they don't act in an orderly manner.

The group doesn't have supervision and they do act in an orderly manner.

The group does have supervision and they don't act in an orderly manner.

......!!!!!!!!...................................

RESPONSE --> The group does have supervision and they don't act in an orderly manner.

.................................................

......!!!!!!!!...................................

20:39:26 The statement says that if the group doesn't have supervision, they will not act in an orderly manner. So if they don't have supervision and yet do act in an orderly manner the statement is contradicted.

If the group does have supervision, the statement cannot be contradicted because condition of the statement, that the group doesn't have supervision, does not hold. The statement has nothing to say about what happens if the group does have supervision.

Of course if the group doesn't have supervision and doesn't act in orderly manner this is completely consistent with the statement.

Therefore the only way to statement can be considered false is the group doesn't have supervision and does act in an overly manner.

Note that what we know, or think we know, about childrens' behavior has nothing at all to do with the logic of the situation. We could analyze the logic of a statement like 'If the Moon is made of green cheese then most six-year-olds prefer collard greens to chocolate ice cream'. Anything we know about the composition of the Moon or the tastes of children has nothing to do with the fact that the only way this statement could be shown false would be for the Moon to be made of green cheese and most six-year-olds to prefer the ice cream.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

20:44:02 `q002. List the different orders in which the letters a, b and c could be arranged (examples are 'acb' and 'cba'). Explain how you know that your list contains every possible order.

......!!!!!!!!...................................

RESPONSE --> abc acb bac bca cab cba

Since you cant change the first letter and only the other 2 without getting a duplicate, you mutiply the number of letters in this case 3 * 3, and you get 9, however only 2 can be changed after the leading letter for instance abc and acb so you multiply by 1/3 to get 6 and thats how many answers you will have

.................................................

......!!!!!!!!...................................

20:44:15 The only reliable way to get all possible orders is to have a system which we are sure the list every order without missing any.

Perhaps the simplest way to construct all possible orders is to list then alphabetically.

We start with abc. There is only one other order that starts with a, and it is obtained by switching the last two letters to get acb.

The next alphabetical order must start with b. The first possible listing starting with b must follow b with a, leaving c for last. The orders therefore bac. The only other order starting with b is bca.

The next order must start with c, which will be followed by a to give us cab. The next order is obtained by switching the last two letters to get cba.

This exhausts all possibilities for combinations of the three letters a, b and c. Our combinations are, in alphabetical order,

abc, acb, bac, bca, cab, cba.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

20:46:18 `q003. One collection consists of the letters a, c, d and f. Another collection consists of the letters a, b, d and g.

List the letters common to both collections.

List the letters which appear in at least one of the collections.

List the letters in the first half of the alphabet which do not appear in either of the collections.

......!!!!!!!!...................................

RESPONSE --> ab c fg

.................................................

......!!!!!!!!...................................

20:46:27 To letters a and d each appear in both collections. No other letter does.

The letters a, c, d, and f appear in the first collection, so they all in at least one of the collections. In addition to letters b and g appear in the second collection. Therefore letters a, b, c, d, f and g all appear in at least one of the collections.

We consider the letters in the first half of the alphabet, in alphabetical order. a, b, c and d all appear in at least one of the collections, but the letter e does not. The letters f and g also appear in at least one of the collections, but none of the other letters of the alphabet do. The first half of the alphabet ends at m, so the list of letters in the first half of the alphabet which do not occur in at least one of the collections is e, h, i, j, k, l, m.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

20:51:44 `q004. Give the next element in each of the following patterns and explain how you obtained each:

2, 3, 5, 8, 12, ...

3, 6, 12, 24, ...

1, 3, 4, 7, 11, 18, ...

......!!!!!!!!...................................

RESPONSE --> 17, you add the diffrent of 12 and 8, and add 1 each time

48, you multiply the current number by 2

39, you add the diffrence of 18 11 and add 2 each time

.................................................

......!!!!!!!!...................................

20:52:52 The pattern of the sequence 2, 3, 5, 8, 12, ... can be seen by subtracting each number from its successor. 3-2 = 1, 5-3 = 2, 8-5 = 3, 12-8 = 4. The sequence of differences is therefore 1, 2, 3, 4, ... . The next difference will be 5, indicating that the next number must be 12 + 5 = 17.

The pattern of the sequence 3, 6, 12, 24, ... can be discovered by dividing each number into its successor. We obtain 6/3 = 2, 12/6 = 2, 24/12 = 2. This shows us that we are doubling each number to get the next. It follows that the next number in the sequence will be the double of 24, or 48.

The pattern of the sequence 1, 3, 4, 7, 11, 18, ... is a little obvious. Starting with the third number in the sequence, each number is the sum of the two numbers proceeding. That is, 1 + 3 = 4, 3 + 4 = 7, 4 + 7 = 11, and 7 + 11 = 18. It follows that the next member should be 11 + 18 = 29.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

20:54:36 `q005. The number 18 can be 'broken down' into the product 9 * 2, which can then be broken down into the product 3 * 3 * 2, which cannot be broken down any further . Alternatively 18 could be broken down into 6 * 3, which can then be broken down into 2 * 3 * 3.

Show how the numbers 28 and 34 can be broken down until they can't be broken down any further.

Show that there at least two different ways to break down 28, but that when the breakdown is complete both ways end up giving you the same numbers.

......!!!!!!!!...................................

RESPONSE --> 28= 2 *14= 2*2*7 or 28 =4*7= 2*2*7

34=2*17

.................................................

......!!!!!!!!...................................

20:54:40 A good system is to begin by attempting to divide the smallest possible number into the given number. In the case of 34 we see that the number can be divided by 2 give 34 = 2 * 17. It is clear that the factor 2 cannot be further broken down, and is easy to see that 17 cannot be further broken down. So the complete breakdown of 34 is 2 * 17.

To breakdown 28 we can again divide by 2 to get 28 = 2 * 14. The number 2 cannot be further broken down, but 14 can be divided by 2 to give 14 = 2 * 7, which cannot be further broken down. Thus we have 28 = 2 * 2 * 7.

The number 28 could also the broken down initially into 4 * 7. The 4 can be further broken down into 2 * 2, so again we get 28 = 2 * 2 * 7.

It turns out that the breakdown of a given number always ends up with exactly same numbers, no matter what the initial breakdown.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

20:56:08 `q006. Give the average of the numbers in the following list: 3, 4, 6, 6, 7, 7, 9. By how much does each number differ from the average?

......!!!!!!!!...................................

RESPONSE --> 6, at the most 3 not that much

.................................................

......!!!!!!!!...................................

20:56:12 To average least 7 numbers we add them in divide by 7. We get a total of 3 + 4 + 6 + 6 + 7 + 7 + 9 = 42, which we then divide by 7 to get the average 42 / 7 = 6.

We see that 3 differs from the average of 6 by 3, 4 differs from the average of 6 by 2, 6 differs from the average of 6 by 0, 7 differs from the average of 6 by 1, and 9 differs from the average of 6 by 3.

A common error is to write the entire sequence of calculations on one line, as 3 + 4 + 6 + 6 + 7 + 7 + 9 = 42 / 7 = 6. This is a really terrible habit. The = sign indicates equality, and if one thing is equal to another, and this other today third thing, then the first thing must be equal to the third thing. This would mean that 3 + 4 + 6 + 6 + 7 + 7 + 9 would have to be equal to 6. This is clearly not the case. It is a serious error to use the = sign for anything but equality, and it should certainly not be used to indicate a sequence of calculations.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

20:57:21 `q007. Which of the following list of numbers is more spread out, 7, 8, 10, 10, 11, 13 or 894, 897, 902, 908, 910, 912? On what basis did you justify your answer?

......!!!!!!!!...................................

RESPONSE --> the second set, gaps betwen each of the numbers

.................................................

......!!!!!!!!...................................

20:57:25 The first set of numbers ranges from 7 to 13, a difference of only 6. The second set ranges from 894 to 912, a difference of 18. So it appears pretty clear that the second set has more variation the first.

We might also look at the spacing between numbers, which in the first set is 1, 2, 0, 1, 2 and in the second set is 3, 5, 6, 2, 2. The spacing in the second set is clearly greater than the spacing in the first.

There are other more sophisticated measures of the spread of a distribution of numbers, which you may encounter in your course.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

20:59:00 `q008. 12 is 9 more than 3 and also 4 times 3. We therefore say that 12 differs from 3 by 9, and that the ratio of 12 to 3 is 4.

What is the ratio of 36 to 4 and by how much does 36 differ from 4?

If 288 is in the same ratio to a certain number as 36 is to 4, what is that number?

......!!!!!!!!...................................

RESPONSE --> 9

32

.................................................

......!!!!!!!!...................................

20:59:03 Just as the ratio of 12 to 3 is 12 / 3 = 4, the ratio of 36 to 4 is 36 / 4 = 9. 36 differs from 4 by 36 - 4 = 32.

Since the ratio of 36 to 4 is 9, the number 288 will be in the same ratio to a number which is 1/9 as great, or 288 / 9 = 32.

Putting this another way, the question asks for a 'certain number', and 288 is in the same ratio to that number as 36 to 4. 36 is 9 times as great as 4, so 288 is 9 times as great as the desired number. The desired number is therefore 288/9 = 32.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:05:44 `q009. A triangle has sides 3, 4 and 5. Another triangle has the identical shape of the first but is larger. Its shorter sides are 12 and 16. What is the length of its longest side?

......!!!!!!!!...................................

RESPONSE --> 14

.................................................

......!!!!!!!!...................................

21:06:05 ** You need to first see that that each side of the larger triangle is 4 times the length of the corresponding side of the smaller. This can be seen in many ways, one of the most reliable is to check out the short-side ratios, which are 12/3 = 4 and 16/4 = 4. Since we have a 4-to-1 ratio for each set of corresponding sides, the side of the larger triangle that corresponds to the side of length 5 is 4 * 5 = 20. **

......!!!!!!!!...................................

RESPONSE --> ok