#$&* course Mth 271 If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.
.............................................
Given Solution: `a the specific idea is that ave rate of depth change is [change in depth / change in time] ; rise represents change in depth and run represents change in time so slope = rise/run represents ave rate of depth change. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qexplain why the area of a rate vs. time trapezoid for a given time interval represents the change in the quantity corresponding to that time interval YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The area of a trapezoid is found with the altitude and width. The altitude of a trapezoid represents the average velocity, while the width shows the change in time. Average altitude * width = change in quanity confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a The average altitude represents the avg. velocity. The area of a trapezoid involves the altitude, which represents the avg. velocity, and the width, which represents the change in clock time. When you multiply ave altitude by width you are representing ave vel * change in clock time, which gives change in position. This reasoning isn't confined to velocities. For any rate vs. clock time graph, average altitude represents approximate average rate, which multiplied by the change in time (not by the time itself) gives you the change in quantity ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qtext problem 0.5 #10 add x/(2-x) + 2/(x-2) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x/2-x + 2/x-2
.............................................
Given Solution: `a common denominator could be [ (2-x)(x-2) ]. In this case we have x / (2-x) + 2 / (x-2) = [ (x-2) / (x-2) ] * [ x / (2-x) ] + [ (2-x) / (2-x) ] * [ 2 / (x-2) ] = x(x-2) / [ (2-x)(x-2) ] + 2 (2-x) / [ (2-x)(x-2) ] = [x(x-2) + 2(2-x) ] / [ (2-x)(x-2) ] = [ x^2 - 2x + 4 - 2x ] / [ (2-x)(x-2) ] = (x^2-4x+4) / [ -x^2+4x-4 ] = (x-2)^2 / [-(x-2)^2] = -1. NOTE however that there is a SIMPLER SOLUTION: We can note that x-2 = -(2-x) so that the original problem is -x/(x-2) + 2 /(x-2) = (-x + 2) / (x-2) = -(x-2)/(x-2) = -1. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I got the same answer as you, but did not work out the problem the same. I really do not understand how you worked it out. ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qtext problem 0.5 #50 cost = 6 x + 900,000 / x, write as single fraction and determine cost to store 240 units YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a express with common denominator x: [x / x] * 6x + 900,000 / x = 6x^2 / x + 900,000 / x = (6x^2 + 900,000) / x so cost = (6x^2+900,000)/x Evaluating at x = 240 we get cost = (6 * 240^2 + 900000) / 240 = 5190. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I’m not really sure how you worked out this problem. I’m confused because on how to read it to understand it since It has to be typed. ------------------------------------------------ Self-critique Rating: