course Mth 158 I had considerable difficulty with #34. My answer came up with a zero denominator. Can you help me solve this? [( 9x^2 + 3x - 2)/(12x^2 + 5x - 2)]/[(9x^2 - 6x + 1)/8x^2 - 10x -3)].
......!!!!!!!!...................................
12:53:51 Query R.7.10 (was R.7.6). Show how you reduced (x^2 + 4 x + 4) / (x^4 - 16) to lowest terms.
......!!!!!!!!...................................
RESPONSE --> ( x^2 + 4x + 4)/x^2 - 4 = (x+2)(x+2)/(x-2)(x+2) =(x+2)/(x-2)
.................................................
......!!!!!!!!...................................
13:00:42 ** We factor the denominator to get first (x^2-4)(x^2+4), then (x-2)(x+2)(x^2+4). The numerator factors as (x+2)^2. So the fraction is (x+2)(x+2)/[(x-2)(x+2)(x^2+4)], which reduces to (x+2)/[(x-2)(x^2+4)]. **
......!!!!!!!!...................................
RESPONSE --> I don't understand how the denominator was factored. I thought x^2-4 was the difference of 2 squares.
.................................................
......!!!!!!!!...................................
13:04:14 Query R.7.28 (was R.7.24). Show how you simplified[ ( x - 2) / (4x) ] / [ (x^2 - 4 x + 4) / (12 x) ].
......!!!!!!!!...................................
RESPONSE --> x-2/4x * 12x/x^2 - 4x + 4 x-2/4x * 4x(3)/(x -2)(x - 2)= 3/(x-2)
.................................................
......!!!!!!!!...................................
13:04:28 ** [ ( x - 2) / (4x) ] / [ (x^2 - 4 x + 4) / (12 x) ] = (x-2) * / 4x * 12 x / (x^2 - 4x + 4) = (x-2) * 12 x / [ 4x ( x^2 - 4x + 4) ] = 12 x (x-2) / [4x ( x-2) ( x-2) ] = 3/(x - 2) **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
13:07:18 Query R.7.40 (was R.7.36). Show how you found and simplified the sum (2x - 5) / (3x + 2) + ( x + 4) / (3x + 2).
......!!!!!!!!...................................
RESPONSE --> = 2x - 5 + x + 4/3x+ 2 = 3x - 1/3x + 2
.................................................
......!!!!!!!!...................................
13:07:31 ** We have two like terms so we write (2x-5)/(3x+2) + (x+4)/(3x+2) = [(2x-5)+(x+4)]/(3x+2). Simplifying the numerator we have (3x-1)/(3x+2). **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
13:13:38 Query R.7.52 (was R.7.48). Show how you found and simplified the expression(x - 1) / x^3 + x / (x^2 + 1).
......!!!!!!!!...................................
RESPONSE --> First I found my common denominator of x^3(x^2 + 1). Then I multiplied my numerators like so: (x - 1)(x^2 + 1) and x(x^3). =x^3 + x - x^2 - 1 + x^4/x^3(x^2 + 1) =x^4 + x^3 - x^2 + x -1/x^3(x^2 + 1)
.................................................
......!!!!!!!!...................................
13:14:00 ** Starting with (x-1)/x^3 + x/(x^2+1) we multiply the first term by (x^2 + 1) / (x^2 + 1) and the second by x^3 / x^3 to get a common denominator: [(x-1)/(x^3) * (x^2+1)/(x^2+1)]+[(x)/(x^2+1) * (x^3)/(x^3)], which simplifies to (x-1)(x^2+1)/[ (x^3)(x^2+1)] + x^4/ [(x^3)(x^2+1)]. Since the denominator is common to both we combine numerators: (x^3+x-x^2-1+x^4) / ) / [ (x^3)(x^2+1)] . We finally simplify to get (x^4 +x^3 - x^2+x-1) / ) / [ (x^3)(x^2+1)] **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
13:16:49 Query R.7.58 (was R.7.54). How did you find the LCM of x - 3, x^3 + 3x and x^3 - 9x, and what is your result?
......!!!!!!!!...................................
RESPONSE --> I factored each like so: x - 3 x^2 + 3x = x(x + 3) x^3 - 9x = x(x - 3)(x + 3) My answer for LCM was x(x - 3)(x + 3)
.................................................
......!!!!!!!!...................................
13:21:34 ** x-3, x^3+3x and x^3-9x factor into x-3, x(x^2+3) and x(x^2-9) then into (x-3) , x(x^2+3) , x(x-3)(x+3). The factors x-3, x, x^2 + 3 and x + 3 'cover' all the factors of the three polynomials, and all are needed to do so. The LCM is therefore: x(x-3)(x+3)(x^2+3) **
......!!!!!!!!...................................
RESPONSE --> My book has x^2 + 3x instead of x^3 + 3x for the second one. I think this would make my answer correct.
.................................................
......!!!!!!!!...................................
13:27:16 Query R.7.64 (was R.7.60). Show how you found and simplified the difference3x / (x-1) - (x - 4) / (x^2 - 2x + 1).
......!!!!!!!!...................................
RESPONSE --> first I found my LCM of (x - 1)^2. Next, I multiplied the numerator like so: 3x(x - 1). The second numerator of x - 4 didn't need to be multiplied. = 3x^2 - 3x - x - 4/(x-1)^2 = 3x^2 - 4x - 4/(x-1)^2
.................................................
......!!!!!!!!...................................
13:28:03 ** Starting with 3x / (x-1) - (x-4) / (x^2 - 2x +1) we factor the denominator of the second term to obtain (x - 1)^2. To get a common denominator we multiply the first expression by (x-1) / (x-1) to get 3x(x-1)/(x-1)^2 - (x-4)/(x-1)^2, which gives us (3x^2-3x-x-4) / (x-1)^2 = (3x^2 - 4x - 4) / (x-1)^2. DRV**
......!!!!!!!!...................................
RESPONSE --> ok
.................................................