asst 1

#$&*

course Phy 202

Question: Suppose you measure the length of a pencil. You use both a triply-reduced ruler and the original ruler itself, and you make your measurements accurate to the smallest mark on each. You then multiply the reading on the triply-reduced ruler by the appropriate scale factor.

• Which result is likely to be closer to the actual length of the pencil?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

The original ruler would produce the measurement closest to the actual legth of the pencil

#$&*

• What factors do you have to consider in order to answer this question and how do they weigh into your final answer?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

You have to take into account the human error and the observation inaccuracies because if an inaccurate length is taken with the reduced ruler and then multiplied the measurement would be even more inaccurate

#$&*

*********************************************

Question: Answer the same questions as before, except assume that the triply-reduced ruler has no optical distortion, and that you also know the scale factor accurate to 4 significant figures.

• Which result is likely to be closer to the actual length of the pencil?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Because the reduced ruler is accurate to 4 sig figs it would produce the most accurate measurement

#$&*

• What factors do you have to consider in order to answer this question and how do they weigh into your final answer?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

You take into account the known accuracy level of the different rulers and there are no optical distortions

#$&*

*********************************************

Question: Suppose you are to measure the length of a rubber band whose original length is around 10 cm, measuring once while the rubber band supports the weight of a small apple and again when it supports the weight of two small apples. You are asked to report as accurately as possible the difference in the two lengths, which is somewhere between 1 cm and 2 cm. You have available the singly-reduced copy and the triply-reduced copy, and your data from the optical distortion experiment.

• Which ruler will be likely to give you the more accurate difference in the lengths?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Because we are looking in between 1-2 cm I think the triply reduced ruler would be more useful, but the triply reduced ruler could be more inaccurate than the regular ruler

#$&*

• Explain what factors you considered and how they influence your final answer.

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I took into account that the inaccuracies that could be related with the triply reduced ruler, but with no optical distortions the triply reduced ruler would be the best choice for measuring a small difference in distance

#$&*

*********************************************

Question: Later in the course you will observe how the depth of water in a uniform cylinder changes as a function of time, when water flows from a hole near the bottom of the cylinder. Suppose these measurements are made by taping a triply-reduced ruler to the side of a transparent cylinder, and observing the depth of the water at regular 3-second intervals.

The resulting data would consist of a table of water depth vs. clock times, with clock times 0, 3, 6, 9, 12, ... seconds. As depth decreases the water flows from the hole more and more slowly, so the depth changes less and less quickly with respect to clock time.

Experimental uncertainties would occur due to the optical distortion of the copied rulers, due to the spacing between marks on the rulers, due to limitations on your ability to read the ruler (your eyes are only so good), due to timing errors, and due to other possible factors.

Suppose that depth changes vary from 5 cm to 2 cm over the first six 3-second intervals.

Assume also that the timing was very precise, so that there were no significant uncertainties due to timing.

• Based on what you have learned in experiments done through Assignment 1, without doing extensive mathematical analysis, estimate how much uncertainty would be expected in the observed depths, and briefly explain the basis for your estimates. Speculate also on how much uncertainty would result in first-difference calculations done with the depth vs. clock time data, and how much in second-difference calculations.

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Uncertainties would be within both reduced rulers inaccuracies and in human error in taking the measurements, and the uncertainties would increase from first difference calculation to second difference calculations

#$&*

• How would these uncertainties affect a graph of first difference vs. midpoint clock time, and how would they affect a graph of second difference vs. midpoint clock time?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

The uncertainties would affect the graph of the first difference versus midpoint clock time but not by very much. You may not be able to tell how much the inaccuracies are affecting the graphs but just looking at the graph, but on the second difference the graph would show the inaccuracies much better

#$&*

• How reliably do you think the first-difference graph would predict the actual behavior of the first difference?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

The first difference graph would be reliable because the measurements would be accurate but not precise.

#$&*

• Answer the same for the second-difference graph.

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

The second difference graph wouldn’t be reliable because the numbers used would be too inaccurate

#$&*

• What do you think the first difference tells you about the system? What about the second difference?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

The first difference reported the velocities between time interval while the second difference reports the acceleration within those intervals

#$&*

*********************************************

Question: Suppose the actual second-difference behavior of the depth vs. clock time is in fact linear. How nearly do you think you could estimate the slope of that graph from data taken as indicated above (e.g., within 1% of the correct slope, within 10%, within 30%, or would no slope be apparent in the second-difference graph)?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Because the graph is linear, I would think within 10%

#$&*

Again no extensive analysis is expected, but give a brief synopsis of how you considered various effects in arriving at your estimate.

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I have determined slopes within 1%, but because the second difference graph will probably have inaccuracies, I would think within 10%

#$&*

"

&#Your work looks very good. Let me know if you have any questions. &#