Assignment 12

course Math 163

012.*********************************************

Question: `q001. Note that this assignment has 3 questions

If we know that y = k x^2, then if (x2/x1) = 7, what is (y2/y1)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = k x ^2

(x2/x1) = 7

(y2/y1) = ?

y2/y1 = (k x2^2)/(k x1^2)

y2/y1 = x2^2/x1^2

y2/y1 = (x2/x1)^2

(x2/x1) = 7

y2/y1 = (x2/x1)^2 = 7^2 = 49

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If y2 = k x2^2 and y1 = k x1^2, then y2 / y1 = (k x2^2) / ( k x1^2). Since k / k = 1 this is the same as

y2 / y1 = x2^2 / x1^2, which is the same as

y2 / y1 = (x2 / x1)^2.

In words this tells us if y to is proportional to the square of x, then the ratio of y2 to y1 is the same as the square of the ratio of x2 to x1.

Now if (x2 / x1) = 7, we see that y2 / y1 = (x2 / x1)^2 = 7^2 = 49.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating #$&*: OK

*********************************************

Question: `q002. If we know that y = k x^3, then if (x2/x1) = 7, what is (y2/y1)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = k x^3

(x2/x1) = 7

(y2/y1) = ?

y2/y1 = (k x2^3)/(k x1^3)

y2/y1 = x2^3/x1^3

y2/y1 = (x2/x1)^3

(x2/x1) = 7

y2/y1 = (x2/x1)^3 = 7^3 = 343

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If y2 = k x2^3 and y1 = k x1^3, then y2 / y1 = (k x2^3) / ( k x1^3). Since k / k = 1 this is the same as

y2 / y1 = x2^3 / x1^3, which is the same as

y2 / y1 = (x2 / x1)^3.

In words this tells us if y to is proportional to the cube of x, then the ratio of y2 to y1 is the same as the cube of the ratio of x2 to x1.

Now if (x2 / x1) = 7, we see that y2 / y1 = (x2 / x1)^3 = 7^3 = 343.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique rating #$&*: OK

*********************************************

Question: `q003. If we know that y = k x^-2, then if (x2/x1) = 64, what is (y2/y1)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = k x^-2

(x2/x1) = 64

(y2/y1) = ?

y2/y1 = (k x2^-2)/(k x1^-2)

y2/y1 = (x2^-2)/(x1^-1)this is the same as below, because it is a negative power so we have to use inverse proportions.

1/(x2/x1)^2

(x2/x1) = 64

(y2/y1) = 1/(x2/x1)^2 = 64^2 = 4096

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

If y2 = k x2^-2 and y1 = k x1^-2, then y2 / y1 = (k x2^-2) / ( k x1^-2). Since k / k = 1 this is the same as

y2 / y1 = x2^-2 / x1^-2, which is the same as

y2 / y1 = (x2 / x1)^-2, which is the same as

1 / (x2 / x1)^2, which gives us

(x1 / x2)^2.

So if y = k x^-2, then (y2 / y1) = (x1 / x2)^2.(

In words this tells us if y to is inversely proportional to the square of x, then the ratio of y2 to y1 is the same as the square of the ratio of x1 to x2 (note that this is a reciprocal ratio).

Now if (x2 / x1) = 64, we see that y2 / y1 = (x1 / x2)^2 = (1/64)^2 = 1/ 4096.

&#This looks very good. Let me know if you have any questions. &#

I note that you have submitted the q_a_ for each assignment, through Assignment 12 (including the present). Your work appears to be good.

However you haven't submitted any of the Queries, which are requested at the end of each assignment. You should work through the worksheets and submit the Queries.