Assignment 3

course Mth 163

Our answers do not match at all. I don't know what I have done wrong. If you can't find it in my work is there any chance that I can come in and get you to help me out with this assignment.

Question:  `q001.    Note that this assignment has 6 questions 

The function y = a x^2 + b x + c takes the value y = 0 when x = [ -b + `sqrt(b^2 - 4 a c ] / (2 a) or when x = [ -b - `sqrt(b^2 - 4 a c ] / (2 a). 

 

For the function y = - 0.45833 x^2  + 5.33333 x - 6.875, which you obtained as a quadratic model of the points (1, -2), (3, 5) and (7, 8) in the preceding assignment, find the values of x for which y = 0. 

 

Compare to the estimates you made from the graph through (1,-2), (3, 5) and (7, 8) in Assignment 1. 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 x = [ -b + `sqrt(b^2 - 4 a c ] / (2 a) or when x = [ -b - `sqrt(b^2 - 4 a c ] / (2 a). 

x = [ 8 +`sqrt( 8^2 - 4(-1.125) * (-8.875)] / (2 *( -1.125) = -0.888 = -0.9

x = [ 8 -`sqrt( 8^2 - 4(-1.125) * (-8.875)] / (2 *( -1.125) = 8

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

For the function y = - 0.45833 x^2  + 5.33333 x - 6.875 we have a = -0.45833, b = 5.33333 and c = -6.875.  The quadratic formula therefore tells us that for our function we have y = 0 when

 

x = [-5.33333 + `sqrt(5.33333^2 - 4 * (-0.45833 ) * (-6.875)) ] / ( 2 * (-0.45833)) = 1.47638 and when

 

x = [-5.33333 - `sqrt(5.33333^2 - 4 * (-0.45833 ) * (-6.875)) ] / ( 2 * (-0.45833)) = 10.16006.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):I worked this problem out on paper but I'm not exactly sure how to type it so I tried my best.

The form of your solution is good; it's not clear where you got the numbers, but you appear to have evaluated your expressions correctly.

 

------------------------------------------------

Self-critique Rating: Our solutions didn't match because I have different answers than you do.

*********************************************

Question:  `q002.  Extend the smooth curve in your sketch to include both points at which y = 0.  Estimate the x value at which y takes its maximum value. 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

y takes it maximum at 7 and when it is at it's max x = 5

 

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

Your graph should clearly show how the parabola passes through the x axis at the points where x is approximately 1.5 (corresponding to the more accurate value 1.47638 found in the preceding problem) and where takes is a little more than 10 (corresponding to the more accurate value 10.16006 found in the preceding problem).

 

The graph of the parabola will peak halfway between these x values, at approximately x = 6 (actually closer to x = 5.8), where the y value will be between 8 and 9.

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I have no idea what I have done wrong. Our answers are close but not exact.

------------------------------------------------

Self-critique Rating: Many of my answers do not match yours. I am not understanding what I have done wrong to get the wrong answer. I do like the problem asks and like the answer states and I get different answers.

This problem is clearly based on an estimate of a hand-sketched curve and you cannot expect it to match any specific given solution exactly.

*********************************************

Question:  `q003.  For the function of the preceding two questions, y will take its maximum value when x is halfway between the two values at which y = 0.  Recall that these two values are approximately x = 1.48 and x = 10.16.  At what x value will the function take its maximum value?  What will be this value?  What are the coordinates of the highest point on the graph?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

max. 4. 8

(4.8, 7)

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

The x value halfway between x = 1.48 and x = 10.16 is the average x = (1.48 + 10.16) / 2 = 5.82.

 

At x = 5.82 we have y = - 0.45833 x^2  + 5.33333 x - 6.875 = -.45833 * 5.82^2 + 5.33333 * 5.82 - 6.875 = 8.64 approx.. 

 

Thus the graph of the function will be a parabola whose maximum occurs at its vertex (5.82, 8.64).

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):The same as above.

 

 Self-critique Rating: same as above.

*********************************************

Question:  `q004.  The function y = a x^2 + b x + c has a graph which is a parabola.  This parabola will have either a highest point or a lowest point, depending upon whether it opens upward or downward.  In either case this highest or lowest point is called the vertex of the parabola.  The vertex of a parabola will occur when x = -b / (2a).

 

At what x value, accurate to five significant figures, will the function y = - 0.458333 x^2  + 5.33333 x - 6.875 take its maximum value?  Accurate to five significant figures, what is the corresponding y value?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 my equation is different than yours so I have a different b and a. x = -b / (2a) = -8/ (2 * -1.125 ) = 3.555

The question asked abou the function y = - 0.458333 x^2  + 5.33333 x - 6.875. It isn't clear where you got numbers like 8, -1.125, etc.; these numbers do not seem to be related to the stated problem.

 Confidence rating:1

.............................................

Given Solution: 

In the preceding problem we approximated the x value at which the function is maximized by averaging 1.48 and 10.16, the x values at which the function is zero.  Here we will use x = -b / (2 a) to obtain

 

x value at which function is maximized:  x = -b / (2a) = - 5.33333 / (2 * -0.45833) = 5.81818.

 

To find corresponding y value we substitute x = 5.81818 into y = - 0.458333 x^2  + 5.33333 x - 6.875 to obtain y = 8.64024.

 

Thus the vertex of the parabola lies at (5.81818, 8.64024).

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): Same as above

 

 Self-critique Rating: Same as above

*********************************************

Question:  `q005.  As we just saw the vertex of the parabola defined by the function y = - 0.45833 x^2  + 5.33333 x - 6.875 lies at (5.8182, 8.6402). 

 

What is the value of x at a point on the parabola which lies 1 unit to the right of the vertex, and what is the value of x at a point on the parabola which lies one unit to the left of the vertex? 

 

What is the value of y corresponding to each of these x values?

 

By how much does each of these y values differ from the y value at the vertex, and how could you have determined this number by the equation of the function?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Our answers don't match at all so I am confused on what to do. Nothing I have done matches the given answer.

confidence rating:

you don't appear to be using the function in the stated problem; see my previous notes

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

The vertex lies at x = 5.8182, so the x values of points lying one unit to the right and left of the vertex must be x = 6.8182 and x = 4.8182.  At these x values we find by substituting into the function y = - 0.458333 x^2  + 5.33333 x - 6.875 that at both points y = 8.1818.

 

Each of these y values differs from the maximum y value, which occurs at the vertex, by -0.4584.  This number is familiar.  Within roundoff error is identical to to the coefficient of x^2 in the original formula y = - 0.458333 x^2  + 5.33333 x - 6.875.

 

This will always be the case.  If we move one unit to the right or left of the vertex of the parabola defined by a quadratic function y = a x^2 + b x + c, the y value always differ from the y value at the vertex by the coefficient a of x^2.  Remember this.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I have done everything wrong in this assignment.

 

------------------------------------------------

Self-critique Rating: None of my answers match what you have so I am confused to what I am doing.

*********************************************

Question:  `q006.  In the preceding problem we saw an instance of the following rule:

 

The function y = a x^2 + b x + c has a graph which is a parabola.  This parabola has a vertex.  If we move 1 unit in the x direction from the vertex, moving either 1 unit to the right or to the left, then move vertically a units, we end up at another point on the graph of the parabola.

 

In assignment 2 we obtained the solution a = -1, b = 10, c = 100 for a system of three simultaneous linear equations.  If these linear equations had been obtained from 3 points on a graph, we would then have the quadratic model y = -1 x^2 + 10 x + 100 for those points.

 

What would be the coordinates of the vertex of this parabola?  What would be the coordinates of the points on the parabola which lie 1 unit to the right and one unit to the left of the vertex?

 

Sketch a graph with these three points, and sketch a parabola through these points.  Will this parabola ever touch the x axis?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 Our answers don't match at all so I am confused on what to do. Nothing I have done matches the given answer.

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

The vertex of the parabola given by y = -1 x^2 + 10 x + 100 will lie at x = -b / (2 a) = -10 / (2 * -1) = 5.

 

At the vertex the y value will therefore be

 

y = -1 x^2 + 10 x + 100 = -1 * 5^2 + 10 * 5 + 100 = 125.

 

It follows that if we move 1 unit in the x direction to the right or left, the y value will change by a = -1.  The y value will therefore change from 125 to 124, and we will have the 3 'fundamental points' (4, 124), (5, 125), and (6, 124).

 

Your graph should show a parabola peaking at (5, 125) and descending slightly as we move 1 unit to the right or left of this vertex.  The parabola will then descend more and more rapidly, eventually crossing the x-axis both to the left and to the right of the vertex.

 

The points to the right and left show clearly that the parabola descends from its vertex.  This is because in this case a = -1, a negative value, which effectively pulls the parabola down on either side of the vertex.  Had the value of a been positive, the points one unit to the right and left would lie above the vertex and the parabola would asscend from its vertex. 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): have done everything wrong in this assignment.

 

------------------------------------------------

Self-critique Rating: None of my answers match what you have so I am confused to what I am doing. "

Your solutions appear to have the right form, but it's not clear where you're getting some of your numbers, which often do not seem to match the given questions.

Can you clarify where numbers like 8 and -1.125 came from?