Assignment 4 

course Mth 163

Assignment 4: 004.

 

*********************************************

Question:  `q001.    Note that this assignment has 4 questions

 

If f(x) = x^2 + 4, then find the values of the following:  f(3), f(7) and f(-5).  Plot the corresponding points on a graph of y = f(x) vs. x.  Give a good description of your graph.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

f(3) = 13

f(7)= 53

f(5) = 29

The graph is a parabola and it is quadratic. It passes through these various points.

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

f(x) = x^2 + 4.  To find f(3) we replace x by 3 to obtain

 

f(3) = 3^2 + 4 = 9 + 4 = 13.

 

Similarly we have

 

f(7) = 7^2 + 4 = 49 + 4 = 53 and

 

f(-5) = (-5)^2 + 9 = 25 + 4 = 29.

 

Graphing f(x) vs. x we will plot the points (3, 13), (7, 53), (-5, 29).  The graph of f(x) vs. x will be a parabola passing through these points, since f(x) is seen to be a quadratic function, with a = 1, b = 0 and c = 4.

 

The x coordinate of the vertex is seen to be -b/(2 a) = -0/(2*1) = 0.  The y coordinate of the vertex will therefore be f(0) = 0 ^ 2 + 4 = 0 + 4 = 4.  Moving along the graph one unit to the right or left of the vertex (0,4) we arrive at the points (1,5) and (-1,5) on the way to the three points we just graphed.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question:  `q002.  If f(x) = x^2 + 4, then give the symbolic expression for each of the following:  f(a), f(x+2), f(x+h), f(x+h)-f(x) and [ f(x+h) - f(x) ] / h.  Expand and/or simplify these expressions as appropriate.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 f(a) = a^2 = 4

f(x + 2) = (x + 2)^2 + 4

f(x + h) = x^2 + 2h + h^2 + 4

f(x + h) -f(x) = 2hx + h^2

[f(x + h) - f(x) ] / h = 2x + h

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

If f(x) = x^2 + 4, then the expression f(a) is obtained by replacing x with a:

 

f(a) = a^2 + 4.

 

Similarly to find f(x+2) we replace x with x + 2:

 

f(x+2) = (x + 2)^2 + 4, which we might expand to get (x^2 + 4 x + 4) + 4 or x^2 + 4 x + 8. 

 

To find f(x+h) we replace x with x + h to obtain

 

f(x+h) = (x + h)^2 + 4 = x^2 + 2 h x + h^2 + 4.

 

To find f(x+h) - f(x) we use the expressions we found for f(x) and f(x+h):

 

 f(x+h) - f(x) = [ x^2 + 2 h x + h^2 + 4 ] - [ x^2 + 4 ] = x^2 + 2 h x + 4 + h^2 - x^2 - 4 = 2 h x + h^2.

 

To find [ f(x+h) - f(x) ] / h we can use the expressions we just obtained to see that

 

 [ f(x+h) - f(x) ] / h = [ x^2 + 2 h x + h^2 + 4 - ( x^2 + 4) ] / h = (2 h x + h^2) / h = 2 x + h.

 

You should have written these expressions out, and the following should probably be represented on your paper in form similar to that given here:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question:  `q003.  If f(x) = 5x + 7, then give the symbolic expression for each of the following:  f(x1), f(x2), [ f(x2) - f(x1) ] / ( x2 - x1 ).  Note that x1 and x2 stand for subscripted variables (x with subscript 1 and x with subscript 2), not for x * 1 and x * 2.  x1 and x2 are simply names for two different values of x.  If you aren't clear on what this means please ask the instructor.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

f(x1) =5(x1) + 7

f(x2) = 5(x2) + 7

[f(x2) -f(x1)] / (x2 - x1) = 5

 

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

Replacing x by the specified quantities we obtain the following:

 

f(x1) = 5 * x1 + 7,

 

f(x2) = 5 * x2 + 7,

 

[ f(x2) - f(x1) ] / ( x2 - x1) = [ 5 * x2 + 7 - ( 5 * x1 + 7) ] / ( x2 - x1) = [ 5 x2 + 7 - 5 x1 - 7 ] / (x2 - x1) = (5 x2 - 5 x1) / ( x2 - x1).

 

We can factor 5 out of the numerator to obtain

 

5 ( x2 - x1 ) / ( x2 - x1 ) = 5.

 

Compare what you have written down with the expressions below:

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question:  `q004.  If f(x) = 5x + 7, then for what value of x is f(x) equal to -3?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 -3 = 5x + 7

5x = -10

Divide by 5 on both sides. x = -2

 

confidence rating:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

If f(x) is equal to -3 then we right f(x) = -3, which we translate into the equation

 

5x + 7 = -3.

 

We easily solve this equation (subtract 7 from both sides then divide both sides by 5) to obtain x = -2.

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): Ok

 

------------------------------------------------

Self-critique Rating:Ok"

&#This looks very good. Let me know if you have any questions. &#