Qa_17

#$&*

course PHY 201

6/25/2012 5:45

Samantha RogersPHY 201

Qa 17

*********************************************

Question:  `q001.  Note that this assignment contains 5 questions.

 

.  A mass of 10 kg moving at 5 meters/second collides with a mass of 2 kg  which is initially stationary.  The collision lasts .03 seconds, during which time the velocity of the 10 kg object decreases to 3  meters/second.  Using the  Impulse-Momentum Theorem determine the average force exerted by the second object on the first.

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 

 The net force on the first object is (m*`dv)/`dt=(10kg*-2m/s)/.03s=-667 N.

 

 

confidence rating #$&*:8232; 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

By the Impulse-Momentum Theorem for a constant mass, Fave * `dt = m `dv so that Fave = m `dv / `dt = 10  kg * (-2 meters/second)/(.03 seconds) = -667 N.

 

Note that this is the force exerted on the 10 kg object, and that the force is negative  indicating that it is in the direction opposite that of the (positive) initial velocity of this object.  Note also that the only thing  exerting a force on this object in the direction of motion is the other object.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

 

 

------------------------------------------------

Self-critique rating: 3 

*********************************************

Question:  `q002.  For the situation of the preceding problem, determine the average force exerted on the second object by the first and using the Impulse-Momentum  Theorem determine the after-collision velocity of the 2 kg mass.

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 

 

 Since the momentum is equal and opposite, the force must be opposite and equivalent: 667N.

667N*.03s / 2kg=vf=10.01m/s

 

  

 

confidence rating #$&*:8232; 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

Since the -667 N force exerted on the first object by the second implies and equal and opposite force of 667  Newtons exerted by the first object on the second.

 

This force will result in a momentum change equal to the impulse F `dt = 667 N *  .03 sec = 20 kg m/s delivered to the 2 kg object. 

 

A momentum change of 20 kg m/s on a 2 kg object  implies a change in velocity of 20 kg m / s / ( 2 kg) = 10 m/s.

 

Since the second object had initial velocity 0, its after-collision velocity  must be 10 meters/second.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 ok I found the change in velocity. The change in momentum is pf-p0.

 

------------------------------------------------

Self-critique rating: 3 

*********************************************

Question:  `q003.  For the situation of the preceding problem, is the total kinetic energy after collision less than or equal to the total kinetic energy before collision?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 

 before the collision object 2 has 0 kinetic energy since it is not moving and object 1 has: 1/2*10kg*5m/s ^2=125 J.

After collision, object 1 has KE=1/2*(10kg)(3m/s)^2=45 J

Object 2: KE=1/2*(2kg)(10m/s)^2=100J

Therefore total Kinetic energy is 100 + 45=145J. this is greater than before the collision.

 

 

confidence rating #$&*:8232; 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

The kinetic energy of the 10 kg object moving at 5 meters/second is .5 m v^2 = .5 * 10 kg * (5 m/s)^2 =  125  kg m^2 s^2 = 125 Joules.  Since the 2 kg object was initially stationary, the total kinetic energy before collision is 125 Joules.

 

The kinetic energy of the 2 kg object after collision is .5 m v^2 = .5 * 2 kg * (10 m/s)^2 = 100 Joules, and the kinetic energy  of the second object after collision is .5 m v^2 = .5 * 10 kg * (3 m/s)^2 = 45 Joules.  Thus the total kinetic energy after collision is 145 Joules.

 

Note that the total kinetic energy after the collision is greater than the total  kinetic energy before the collision, which violates the conservation of energy unless some source of energy other than the kinetic energy (such as a small  explosion between the objects, which would convert some chemical potential energy to kinetic, or perhaps a coiled spring  that is released upon collision, which would convert elastic PE to KE) is involved.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 

 ok. this is only true if there was an external force added into the equation.

------------------------------------------------

Self-critique rating: 2 

*********************************************

Question:  `q004.  For the situation of the preceding problem, how does the total momentum after collision compare to the total momentum before collision?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 

 momentum before:

object 1: P=mv=10kg*5m/s=50 kgm/s

object 2: P=mv=2kg * 0m/s=0kgm/s

after:

object 1: P=mv=10kg*3m/s=30kgm/s

object 2: P=mv=2kg*10m/s=20kgm/s

Total momentum after collision is 50 kgm/s.

 

  

 

confidence rating #$&*:8232; 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

The momentum of the 10 kg object before collision is 10 kg * 5 meters/second = 50 kg meters/second.  This  is the total momentum before collision. 

 

The momentum of the first object after collision is 10 kg * 3 meters/second = 30 kg  meters/second, and the momentum of the second object after collision is 2 kg * 10 meters/second = 20 kg meters/second.  The total  momentum after collision is therefore 30 kg meters/second + 20 kg meters/second = 50 kg meters/second.

 

The total momentum after  collision is therefore equal to the total momentum before collision.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

 

 

------------------------------------------------

Self-critique rating: 3 

*********************************************

Question:  `q005.  How does the Impulse-Momentum Theorem ensure that the total momentum after collision must be equal to the total momentum before collision?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 

 the forces must always be equal and opposite, so the momentum going into the collision must be the same as the momentum after the collision. they happen at the same time, so everything is equivalent.

 

confidence rating #$&*:8232; 

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

Since the force is exerted by the 2 objects on one another are equal and opposite, and since they act  simultaneously, we have equal and opposite forces acting for equal time intervals.  These forces therefore exert equal and opposite impulses on the two objects, resulting in equal and opposite changes in momentum.

 

Since the changes in  momentum are equal and opposite, total momentum change is zero.  So the momentum after collision is equal to the momentum before collision.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

 

 

------------------------------------------------

Self-critique rating: 3 "

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks very good. Let me know if you have any questions. &#