query 17

#$&*

course Phy 121

11:45 am July 6

If your solution to stated problem does not match the given solution, you should self-critique per instructions athttp://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution.

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

017. collisions

*********************************************

Question: `q001. Note that this assignment contains 5 questions.

. A mass of 10 kg moving at 5 meters/second collides with a mass of 2 kg which is initially stationary. The collision lasts .03 seconds, during which time the velocity of the 10 kg object decreases to 3 meters/second. Using the Impulse-Momentum Theorem determine the average force exerted by the second object on the first.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Fave * `dt = m `dv

Fave = m `dv / `dt = 10 kg * (-2 m/sec)/(.03 sec)

= -667 N.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

By the Impulse-Momentum Theorem for a constant mass, Fave * `dt = m `dv so that Fave = m `dv / `dt = 10 kg * (-2 meters/second)/(.03 seconds) = -667 N.

Note that this is the force exerted on the 10 kg object, and that the force is negative indicating that it is in the direction opposite that of the (positive) initial velocity of this object. Note also that the only thing exerting a force on this object in the direction of motion is the other object.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q002. For the situation of the preceding problem, determine the average force exerted on the second object by the first and using the Impulse-Momentum Theorem determine the after-collision velocity of the 2 kg mass.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

F `dt = 667 N * .03 sec = 20 kg m/s

20 / ( 2 kg) = 10 m/s.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Since the -667 N force exerted on the first object by the second implies and equal and opposite force of 667 Newtons exerted by the first object on the second.

This force will result in a momentum change equal to the impulse F `dt = 667 N * .03 sec = 20 kg m/s delivered to the 2 kg object.

A momentum change of 20 kg m/s on a 2 kg object implies a change in velocity of 20 kg m / s / ( 2 kg) = 10 m/s.

Since the second object had initial velocity 0, its after-collision velocity must be 10 meters/second.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q003. For the situation of the preceding problem, is the total kinetic energy after collision less than or equal to the total kinetic energy before collision?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The total kinetic energy after the collision is greater than the total before

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The kinetic energy of the 10 kg object moving at 5 meters/second is .5 m v^2 = .5 * 10 kg * (5 m/s)^2 = 125 kg m^2 s^2 = 125 Joules. Since the 2 kg object was initially stationary, the total kinetic energy before collision is 125 Joules.

The kinetic energy of the 2 kg object after collision is .5 m v^2 = .5 * 2 kg * (10 m/s)^2 = 100 Joules, and the kinetic energy of the second object after collision is .5 m v^2 = .5 * 10 kg * (3 m/s)^2 = 45 Joules. Thus the total kinetic energy after collision is 145 Joules.

Note that the total kinetic energy after the collision is greater than the total kinetic energy before the collision, which violates the conservation of energy unless some source of energy other than the kinetic energy (such as a small explosion between the objects, which would convert some chemical potential energy to kinetic, or perhaps a coiled spring that is released upon collision, which would convert elastic PE to KE) is involved.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique rating:

*********************************************

Question: `q004. For the situation of the preceding problem, how does the total momentum after collision compare to the total momentum before collision?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I would think it would be less than or equal to…

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

The momentum of the 10 kg object before collision is 10 kg * 5 meters/second = 50 kg meters/second. This is the total momentum before collision.

The momentum of the first object after collision is 10 kg * 3 meters/second = 30 kg meters/second, and the momentum of the second object after collision is 2 kg * 10 meters/second = 20 kg meters/second. The total momentum after collision is therefore 30 kg meters/second + 20 kg meters/second = 50 kg meters/second.

The total momentum after collision is therefore equal to the total momentum before collision.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Read the explanation, understand that it is equal to…

------------------------------------------------

Self-critique rating: 3

*********************************************

Question: `q005. How does the Impulse-Momentum Theorem ensure that the total momentum after collision must be equal to the total momentum before collision?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The changes are equal and opposite..this would make total change to equal 0. So it is equal to

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Since the force is exerted by the 2 objects on one another are equal and opposite, and since they act simultaneously, we have equal and opposite forces acting for equal time intervals. These forces therefore exert equal and opposite impulses on the two objects, resulting in equal and opposite changes in momentum.

Since the changes in momentum are equal and opposite, total momentum change is zero. So the momentum after collision is equal to the momentum before collision.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks very good. Let me know if you have any questions. &#

course Phy 121

12:05 pm July 6

Copy the problem below into a text editor or word processor. This form accepts only text so a text editor such as Notepad is fine.

You might prefer for your own reasons to use a word processor (for example the formatting features might help you organize your answer and explanations), but note that formatting will be lost when you submit your work through the form.

If you use a word processor avoid using special characters or symbols, which would require more of your time to create and will not be represented correctly by the form.

As you will see within the first few assignments, there is an easily-learned keyboard-based shorthand that doesn't look quite as pretty as word-processor symbols, but which gets the job done much more efficiently.

You should enter your answers using the text editor or word processor. You will then copy-and-paste it into the box below, and submit.

A 5 kg cart rests on an incline which makes an angle of 30 degrees with the horizontal. Sketch this situation with the incline rising as you move to the right and the cart on the incline. Include an x-y coordinate system with the origin centered on the cart, with the x axis directed up and to the right in the direction parallel to the incline.

The gravitational force on the cart acts vertically downward, and therefore has nonzero components parallel and perpendicular to the incline.

Sketch the x and y components of the force, as estimate the magnitude of each component.

What angle does the gravitational force make with the positive x axis, as measured counterclockwise from the positive x axis? Which is greater in magnitude, the x or the y component of the gravitational force?

answer/question/discussion:

To find magnitude: 5kg*9.8=49N. Would be in the third quadrant, 240 degrees. vertical component is greater

#$&*

@&

Good, but be careful with the word 'vertical'.

'Vertical' is the up-and-down direction defined by the force of gravity.

In this case the axes have been rotated so that neither is vertical.

*@