course Mth 174 ?q?x?€?????y?v??assignment #004?????S??B+???Physics II
......!!!!!!!!...................................
08:06:42 query problem 7.2.12 (3d edition #11) antiderivative of sin^2 x
......!!!!!!!!...................................
RESPONSE --> The integral of sin^2x= sinx * sinx = sinx = u -cosx = u' sinx = v -consx= v' the integral of sinxcosx + the integral of cos^2x = the integral of sinxcosx + the integral of cosxsinx + the integral of sin^2x= the integral of sinxcosx + integral cosxsinx + ingeral of 1 dx + integral cos^2dx 2 integral sinxcosx + integral cosxsinx + integral 1dx = sinxcosx + cosxsinx + x + C= 1/2sinxcosx +cosxsinx + x + C
.................................................
......!!!!!!!!...................................
08:06:47 what is the requested antiderivative?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
08:07:50 What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?
......!!!!!!!!...................................
RESPONSE --> I used u = sinx u'= cosx v= sinx v' = cos x and then did the same for cos^2x
.................................................
......!!!!!!!!...................................
08:20:44 query problem 7.2.16 antiderivative of (t+2) `sqrt(2+3t)
......!!!!!!!!...................................
RESPONSE --> u= 2 + 3t du = 3 dx x = u-2/3 dx= 1/3 du 1/3 integral of ((u-2)/3 + 2) squrt u * du 1/3 integral of (((2 + 3t) -2)/3 +2 squrt 2 + 3t * 3 1/2 integral of ((2 + 3t)/3) - 2/3 + 2 (2 +3t)^(1/2) *3 + C 1/2 integral of ((2 + 3t)/3) (2 +3t)^(1/2) + 13/3 + C
.................................................
......!!!!!!!!...................................
08:20:50 what is the requested antiderivative?
......!!!!!!!!...................................
RESPONSE --> u= 2 + 3t du = 3 dx x = u-2/3 dx= 1/3 du 1/3 integral of ((u-2)/3 + 2) squrt u * du 1/3 integral of (((2 + 3t) -2)/3 +2 squrt 2 + 3t * 3 1/2 integral of ((2 + 3t)/3) - 2/3 + 2 (2 +3t)^(1/2) *3 + C 1/2 integral of ((2 + 3t)/3) (2 +3t)^(1/2) + 13/3 + C
.................................................
......!!!!!!!!...................................
08:21:15 What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?
......!!!!!!!!...................................
RESPONSE --> i used u= 2 + 3t du = 3 dx x = u-2/3 dx= 1/3 du
.................................................
......!!!!!!!!...................................
08:33:35 query problem 7.2.27 antiderivative of x^5 cos(x^3)
......!!!!!!!!...................................
RESPONSE --> integral of x^5 cos(x^3)= (1/3) x^3 sinx^3 + (1/3) cosx + C
.................................................
......!!!!!!!!...................................
08:33:41 what is the requested antiderivative?
......!!!!!!!!...................................
RESPONSE --> integral of x^5 cos(x^3)= (1/3) x^3 sinx^3 + (1/3) cosx + C
.................................................
......!!!!!!!!...................................
08:36:38 What substitution, breakdown into parts and/or other tricks did you use to obtain the antiderivative?
......!!!!!!!!...................................
RESPONSE --> I factored out 1/3 and broke the rest of the equation into parts. I used u= x^5 u' = 5x^4 v= cosx^3 v' = -sinx^3
.................................................
......!!!!!!!!...................................
08:41:54 query problem 7.2.52 (3d edition #50) f(0)=6, f(1) = 5, f'(1) = 2; find int( x f'', x, 0, 1).
......!!!!!!!!...................................
RESPONSE --> I understood in where the book explained how to do integration by parts twice, but I don't know where to start when given f(0) =6, f(1) = 5 and f'(1)=2
.................................................
......!!!!!!!!...................................
08:41:57 What is the value of the requested integral?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
08:42:02 How did you use integration by parts to obtain this result? Be specific.
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
08:42:38 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE --> I did not understand how to do #52.
.................................................
......!!!!!!!!...................................
08:42:43 Query Add comments on any surprises or insights you experienced as a result of this assignment.
......!!!!!!!!...................................
RESPONSE -->
.................................................