course Mth174 ???????J??????assignment #006?????S??B+???Physics II
......!!!!!!!!...................................
11:32:13 Query problem 7.5.13 (3d edition #10) graph concave DOWN and decreasing (note changes indicated by CAPS)
......!!!!!!!!...................................
RESPONSE --> Right < Trap < exact < Mid < Left
.................................................
......!!!!!!!!...................................
11:32:37 list the approximations and their rules in order, from least to greatest
......!!!!!!!!...................................
RESPONSE --> Right < Trap < exact < Mid < Left
.................................................
......!!!!!!!!...................................
11:34:11 between which approximations does the actual integral lie?
......!!!!!!!!...................................
RESPONSE --> Between Trap < Mid
.................................................
......!!!!!!!!...................................
11:50:25 Explain your reasoning
......!!!!!!!!...................................
RESPONSE --> This is where the exact value is.
.................................................
......!!!!!!!!...................................
11:51:52 if you have not done so explain why when a function is concave down the trapezoidal rule UNDERestimates the integral
......!!!!!!!!...................................
RESPONSE --> When a function is concave down the trapezoidal rule underestimates the integral because the curve of the function comes slightly above the shaded region (rectangle) that is being measured.
.................................................
......!!!!!!!!...................................
11:52:39 if you have not done so explain why when a function is concave down the midpoint rule OVERrestimates the integral
......!!!!!!!!...................................
RESPONSE --> When a function is concave down the midpoint rule overestimates the integral because the curve of the function comes slightly below the shaded region, allowing part of the rectangle to not be measured.
.................................................
......!!!!!!!!...................................
11:56:21 Query NOTE: this problem has been left out of the new edition of the text, which is a real shame; you can skip on to the next problem (was problem 7.5.18) graph positive, decreasing, concave upward over interval 0 < x < h
......!!!!!!!!...................................
RESPONSE --> Using right approximation would guarantee an overstimated value, while left approximation would guarantee an underestimated value.
.................................................
......!!!!!!!!...................................
11:57:49 why is the area of the trapezoid h (L1 + L2) / 2?
......!!!!!!!!...................................
RESPONSE --> When you take the average of the right and left values of a trapezoid, it balances out the overestimating and underestimating errors.
.................................................
......!!!!!!!!...................................
11:59:11 Describe how you sketched the area E = h * f(0)
......!!!!!!!!...................................
RESPONSE --> I do not understand this question
.................................................
......!!!!!!!!...................................
12:00:25 Describe how you sketched the area F = h * f(h)
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
12:01:40 Describe how you sketched the area R = h*f(h/2)
......!!!!!!!!...................................
RESPONSE --> I sketched the right approximation by making small rectangles beginning at the line of the funciton, going outward to the right.
.................................................
......!!!!!!!!...................................
12:02:39 Describe how you sketched the area C = h * [ f(0) + f(h) ] / 2
......!!!!!!!!...................................
RESPONSE --> I cannot find this problem in the book.
.................................................
......!!!!!!!!...................................
12:03:42 Describe how you sketched the area N = h/2 * [ f(0) + f(h/2) ] / 2 + h/2 * [ f(h/2) } f(h) ] / 2
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
12:05:38 why is C = ( E + F ) / 2?
......!!!!!!!!...................................
RESPONSE --> Is this still from 7.5? I'm not sure how to solve this.
.................................................
......!!!!!!!!...................................
12:06:29 Why is N = ( R + C ) / 2?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
12:06:44 Is E or F the better approximation to the area?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
12:06:47 Is R or C the better approximation to the area?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
12:11:27 query problem 7.5.24 show trap(n) = left(n) + 1/2 ( f(b) - f(a) ) `dx
......!!!!!!!!...................................
RESPONSE --> trap(n) = left(n) + 1/2 ( f(b) - f(a) ) left(n) + right(n) /2 = left(n) + 1/2 ( f(b) - f(a) )
.................................................
......!!!!!!!!...................................
12:11:58 Explain why the equation must hold.
......!!!!!!!!...................................
RESPONSE --> The equation must hold because both sides balance out the errors of left and right approximation.
.................................................
......!!!!!!!!...................................
12:15:36 In terms of a graph describe how trap(n) differs from left(n) and what this difference has to do with f(b) - f(a).
......!!!!!!!!...................................
RESPONSE --> trap(n) differs from left(n) because with left approximation you find the area acording to the left side of each small rectangle and trap(n) is the average of the left and right approximations. This difference changes the values of f(b) - f(a) depending on if you are useing left, right, or both with trap.
.................................................