#$&* course Mth 173 2/11 9:00 PM 008. Approximate depth graph from the rate function
.............................................
Given Solution: `aThe graph of this function has an intecept on the y' axis at (0,-6) and an intercept on the x axis at (60,0). The graph is a straight line with slope .1. At t = 100 the graph point is (100,4). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Oops, I did not think you meant to take the function as is. the function would give a tangent of the quadratic i created, would it not. ???I am thinking of my geometry class I had a while back, tangent is one touching, and is a derivative, there is a secant, where two is touching, is this when we take the averages? and what about cosine, how would it relate?
.............................................
Given Solution: `aThe graph will have slopes -6 at t = 0, -5 at t = 10, -4 at t = 9, etc.. At least for awhile, the slope will remain negative so the graph will be decreasing. The negative slopes will however become less and less steep. So the graph be decreasing at a decreasing rate. It's obvious that the slopes will eventually reach 0, and since y' is the slope of the y vs. t graph it's clear that this will happen when y' = .1 t - 6 becomes 0. Setting .1 t - 6 = 0 we get t = 60. Note, and think about about the fact, that this coincides with the x-intercept of the graph of y' vs. t. At this point the slope will be 0 and the graph will have leveled off at least for an instant. Past t = 60 the values of y' will be positive, so the slope of the y vs. t graph will be positive and graph of y vs. t will therefore be increasing. The values of y' will also be increasing, so that the slopes of the y vs. t graph will be increasing, and we can say that the graph will be increasing at an increasing rate. STUDENT QUESTION The graph will decrease at a decreasing rate however the slope is decreasing at a constant rate? I believe this is where I get confused because if the slope is constant how does it cause the graph to decrease at a decreasing rate? INSTRUCTOR RESPONSE Be careful to distinguish between the two graphs. We have a graph of y ' vs. t, and we have a graph of y vs. t. They are two separate graphs with different, though related, characteristics. A graph of y ' vs. t is a straight line. y ' gives us the slope of the y vs. t graph (a little more precisely, the value of y ' evaluated some value of t is the slope of the y vs. t graph at that same value of t). Whatever is true about the y ' vs. t graph, it true of the slope of the y vs. t graph. y ' is changing (as you say it is increasing slightly as we move to the right). So the slope of the y vs. t graph is increasing. The y vs. t graph will therefore not be a straight line. At the current point, the value of y ' is in fact negative, so the slope of the y vs. t graph is negative. That is, the y vs. t graph is decreasing. As you have pointed out the y ' vs. t graph is 'slightly increasing', in your words. So the slope of the y vs. t graph is increasing. The y vs. t graph is therefore decreasing, but with an increasing slope. The slope of the y vs. t graph is negative, but is increasing (however slowly) toward 0. Its rate of decrease is therefore decreasing, and we can make the following equivalent statements: The graph is decreasing at a decreasing rate. The graph is decreasing but its slope is increasing. The slope is negative but increasing. The graph is concave up. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK ********************************************* Question: `q003. The graph of y vs. t corresponding to the given rate function y ' = .1 t - 6 has slope -6 at the point (0,100). This slope immediately begins changing, and becomes -5 by the time t = 10. However, let us assume that the slope doesn't change until we get to the t = 10 point. This assumption isn't completely accurate, but we're going to see how it works out. If the slope remained -6 for t = 0 to t = 10, then starting at (0, 100) what point would we reach when t = 10? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ten seconds past, times amount of decrease, -6, -60, so 40 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe slope of the graph is the ratio slope = rise / run. If the slope remains at -6 from t = 0 to t = 10, then the difference between 10 is the run. Thus the run is 10 and the slope is -6, so the rise is rise = slope * run = -6 * 10 = -60. The y coordinate of the graph therefore changes by -60, from y = 100 to y = 100 + (-60) = 40. The corresponding point is (10, 40). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q004. We see that we reach the point (10, 40) by assuming a slope of -6 from t = 0 to t = 10. We have seen that at t = 10 the slope will be y ' = .1 * 10 - 6 = -5. If we maintain this slope for the interval t = 10 to t = 20, what will be the coordinates of the t = 20 point? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: that would be 50 subtracted from the current, so -10. confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe run from t = 10 to t = 20 is 10. With a slope of -5 this implies a rise of rise = slope * run = -5 * 10 = -50. Starting from point (10,40), a rise of -50 and a run of 10 takes the graph to the point (20, -10). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `q005. Continue this process up to the t = 70 point, using a 10-unit t interval for each approximation. Describe the graph that results. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (70,-110) I did this in a simple way using units on the graph, each move right of one unit, decreased the amount of units i would move down by one, so just counted them out and found the ordered pair. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `aThe slope at t = 20 is y ' = .1 * 20 - 6 = -4. From t = 20 to t = 30 the run is 10, so the rise is rise = slope * run = -4 * 10 = -40. Starting from (20,-10) a rise of -40 and a run of 10 takes us to (30, -50). The slope at t = 30 is y ' = .1 * 30 - 6 = -3. From t = 30 to t = 40 the run is 10, so the rise is rise = slope * run = -3 * 10 = -30. Starting from (30,-50) a rise of -30 and a run of 10 takes us to (40, -80). The slope at t = 40 is y ' = .1 * 40 - 6 = -2. From t = 40 to t = 50 the run is 10, so the rise is rise = slope * run = -2 * 10 = -20. Starting from (40,-80) a rise of -20 and a run of 10 takes us to (50, -100). The slope at t = 50 is y ' = .1 * 50 - 6 = -1. From t = 50 to t = 60 the run is 10, so the rise is rise = slope * run = -1 * 10 = -10. Starting from (50,-100) a rise of -10 and a run of 10 takes us to (60, -110). The slope at t = 60 is y ' = .1 * 60 - 6 = -0. From t = 60 to t = 70 the run is 10, so the rise is rise = slope * run = -0 * 10 = 0. Starting from (60,-110) a rise of and a run of 10 takes us to (70, -110). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique Rating:OK" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!