course mth 271 駯fw\c¬assignment #018
......!!!!!!!!...................................
14:42:02 ** Query problem 2.5.48 der of 3/(x^3-4) **** What is your result?
......!!!!!!!!...................................
RESPONSE --> f(x)= 3/z g(x)=x^3-4 1st find f'(x) using the quotient rule f'(x)= (z(0)-3(1))/z^2 f'(x)= -3/z^2 using the chain rule: (3x^2)(-3/(x^3-4)^2) f'(g(x))= (-9x^2)/((x^3-4)^2) self critique assessment: 3
.................................................
......!!!!!!!!...................................
14:42:15 This function can be expressed as f(g(x)) for g(x) = x^3-4 and f(z) = 3 / z. The 'inner' function is x^3 - 4, the 'outer' function is 1 / z. So f'(z) = -3 / z^2 and g'(x) = 3x^2. Thus f'(g(x)) = -3/(x^3-4)^2 so the derivative of the whole function is [3 / (x^3 - 4) ] ' = g'(x) * f'(g(x)) = 3x^2 * (-3/(x^3-4)^2) = -9 x^2 / (x^3 - 4)^2. DER**
......!!!!!!!!...................................
RESPONSE --> yup self critique assessment: 3
.................................................
......!!!!!!!!...................................
14:47:58 **** Query problem 2.5.66 tan line to 1/`sqrt(x^2-3x+4) at (3,1/2) **** What is the equation of the tangent line?
......!!!!!!!!...................................
RESPONSE --> f(x)= 1/sqroot(z) g(x)=x^2-3x+4 1) find f'(x) using quotient rule sqroot((z)(0)-(1)(1/2z^-1/2))/ ((sqrootz)^2) f'(x)=(-1/2z^-1/2)/(z) f'(x)= -1/2z^-3/2 2)find f'(g(x)) using the chain rule g'(x)= 2x-3 (2x-3)(-1/2(x^2-3x+4)^-3/2) 3) plug in x=3 f'(3)= -3/16 4) use pt slope form (y-1/2)= -3/16(x-3) y= -3/16x +17/16 confidence assessment: 3
.................................................
......!!!!!!!!...................................
14:48:07 The derivative is (2x - 3) * -1/2 * (x^2 - 3x + 4) ^(-3/2) . At (3, 1/2) we get -1/2 (2*3-3)(3^2- 3*3 + 4)^(-3/2) = -1/2 * 3 (4)^-(3/2) = -3/16. The equation is thus ( y - 1/2) = -3/16 * (x - 3), or y = -3/16 x + 9/16 + 1/2, or y = -3/16 x + 17/16. DER**
......!!!!!!!!...................................
RESPONSE --> yup self critique assessment: 3
.................................................
......!!!!!!!!...................................
14:49:12 **** Query problem 2.5.72 rate of change of pollution P = .25 `sqrt(.5n^2+5n+25) when pop n in thousands is 12 **** At what rate is the pollution changing at the given population level?
......!!!!!!!!...................................
RESPONSE --> im not sure what the two f(x) are... f(x)=.25sqroot(z) g(x)=.5n^2+5n+25 then use the product rule to get f'(x)?? doesnt sound right confidence assessment: 0
.................................................
......!!!!!!!!...................................
14:49:49 The derivative is .25 [ (n + 5) * 1/2 * (.5 n^2 + 5 n + 25) ^(-1/2) ) = (n+5) / [ 8 `sqrt(.5n^2 + 5n + 25) ] When n = 12 we get (12+5) / ( 8 `sqrt(.5*12^2 + 5 * 12 + 25) ) = 17 / 100 = .17, approx. DER**
......!!!!!!!!...................................
RESPONSE --> okay im not seeing where the derivative is coming from what is f(x) and what is g(X) and which rule was used? self critique assessment: 0
.................................................