#$&* course MTH 151 7:25 pm 4/3/13 Question: `q001. There are 5 questions in this set.
.............................................
Given Solution: 836 means 8 * 100 + 3 * 10 + 6 * 1, or 8 * 10^2 + 3 * 10^1 + 6 * 10^0. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `q002. How would we write 34,907 in terms of powers of 10? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3 * 10,000 + 4* 1,000 + 9 * 100 + 0 * 10 +7 * 1 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: 34,907 means 3 * 10,000 + 4 * 1000 + 9 * 100 + 0 * 10 + 7 * 1, or 3 * 10^4 + 4 * 10^3 + 9 * 10^2 + 0 * 10 + 7 * 1. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `q003. How would we write .00326 in terms of powers of 10? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 0 * .1 + 0 * .01+ 3 * .001 + 2 * .0001 + 6 * .00001 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: First we note that .1 = 1/10 = 1/10^1 = 10^-1, .01 = 1/100 = 1/10^2 = 10^-2, .001 = 1/1000 = 1/10^3 = 10^-3, etc.. Thus .00326 means 0 * .1 + 0 * .01 + 3 * .001 + 2 * .0001 + 6 * .00001 = 0 * 10^-1 + 0 * 10^-2 + 3 * 10^-3 + 2 * 10^-4 + 6 * 10^-5 . &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q004. How would we add 3 * 10^2 + 5 * 10^1 + 7 * 10^0 to 5 * 10^2 + 4 * 10^1 + 2 * 10^0? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 357+ 542=899 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: We would write the sum as (3 * 10^2 + 5 * 10^1 + 7 * 10^0) + (5 * 10^2 + 4 * 10^1 + 2 * 10^0) , which we would then rearrange as (3 * 10^2 + 5 * 10^2) + ( 5 * 10^1 + 4 * 10^1) + ( 7 * 10^0 + 2 * 10^0), which gives us 8 * 10^2 + 9 * 10^1 + 9 * 10^0. This result would then be written as 899. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I rewrote the problem as 357 + 542 because we were trying to decipher how to write out the numerical problems and I thought I was just trying to find the beginning numbers and add them together. I don’t know if it would be quicker to go and do that with a calculator or just try to use your head like I did
.............................................
Given Solution: We would write the sum as (4 * 10^2 + 7 * 10^1 + 8 * 10^0) + (5 * 10^2 + 6 * 10^1 + 4 * 10^0) , which we would then rearrange as (4 * 10^2 + 5 * 10^2) + ( 7 * 10^1 + 6 * 10^1) + ( 8 * 10^0 + 4 * 10^0), which gives us 9 * 10^2 + 13 * 10^1 + 12 * 10^0. Since 12 * 10^0 = (2 + 10 ) * 10^0 = 2 * 10^0 + 10^1, we have 9 * 10^2 + 13 * 10^1 + 1 * 10^1 + 2 * 10^0 = 9 * 10^2 + 14 * 10^1 + 2 * 10^0. Since 14 * 10^1 = 10 * 10^1 + 4 * 10^1 = 10^2 + 4 * 10^1, we have 9 * 10^2 + 1 * 10^2 + 4 * 10^1 + 2 * 10^0 = 10^10^2 + 4 * 10^1 + 2 * 10^0. Since 10*10^2 = 10^3, we rewrite this as 1 * 10^3 + 0 * 10^2 + 4 * 10^1 + 2 * 10^0. This number would be expressed as 1042. STUDENT SOLUTION (4 x 10^2 + 5 x 10^2) + (7 x 10^1 + 6 + 10^1) + (8 x 10^0 + 4 x 10^0) adds up to 9 x 10^2 + 13 x 10^1 + 12 x 10^0 = 1042 INSTRUCTOR RESPONSE You got 9 x 10^2 + 13 x 10^1 + 12 x 10^0 = 1042 But this isn't in its final powers-of-10 notation. 13 * 10^1 isn't a legal expression. Since 13 is greater than 9, you would use the fact that 13 * 10^1 = 10^2 + 3 * 10^1 to write this in correct notation. Your expression would then become 9 x 10^2 + 10^2 + 3 x 10^1 + 12 x 10^0 Also 12 * 10^0 = 10^1 + 2 * 10^0, so your expression is equivalent to 9 x 10^2 + 1 * 10^2 + 3 x 10^1 + 10^1 + 2 x 10^0 When we add the like powers of 10 we find that 9 * 10^2 + 10^2 = 10 * 10^2, which is 10^3. Since 3 * 10^1 + 10^1 = 4 * 10^1. your final expression should be 10^3 + 4 * 10^1 + 2 * 10^0. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): If I already know how to decipher the numbers by looking at it would I really need to write out the whole problem and work it as I would with a calculator? I thought that the beginning problems were to show us how to find the numbers and to make it a lot quicker to answer a long problem such as this.