Query 19

#$&*

course MTH 151

4/18/13 12:20

019. `query 19

*********************************************

Question: `q query 4.2.6 53812 in expanded form.

What is 53812 in expanded form?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(5 * 10^4) + (3 * 10^3)+ (8 * 10^2) + (1 * 10^1) + (2 * 10^0)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

2 means 2 * 10^0

1 means 1 * 10^1

8 means 8 * 10^2

3 means 3 * 10^3

5 means 5 * 10^4

Thus the number 53812 means

(5*10^4)+(3*10^3)+(8*10^2)+(1*10^1)+(2*10^0).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: `q query 4.2.20 536 + 279 in expanded notation

Write 536 + 279 in expanded notation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(5 * 10^2) + (3 * 10^1) + (6 * 10^0) + (2*10^2) + (7 * 10^1) + (9 * 10^0)

(7 * 10 ^2) + (10 * 10^1) + (15 * 10^0)

= (8 * 10^2) + (1 * 10^1) + (5 * 10^0) = 815

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** We write this sum as

5 * 10^2 + 3 * 10^1 + 6 * 10^0 +

2 * 10^2 + 7 * 10^1 + 9 * 10^0

______________________________

8 * 10^2 + 10* 10^1 + 15* 10^0. Since 10 * 10^1 = 10^2 we can write this as

9 * 10^2 + 0 * 10^1 + 15 * 10^0.

Since 15 * 10^0 = 10 * 10^0 + 5 * 10^0 = 10^1 + 5 * 10^0 we rewrite this as

9 * 10^2 + 1 * 10^1 + 5 * 10^0.

This result is expressed in our place-value system as

915. **

STUDENT QUESTION:

When adding the 6*10^0 and the 9*10^0 I don’t carry the one like in regular math?

INSTRUCTOR RESPONSE:

We're not applying the rules for addition as we all learned them in elementary school, but reasoning our results out from the more basic perspective of a place-value system.

6 * 10^0 + 9 * 10^0 = 15 * 10^0.

15 * 10^0 means 10 * 10^0 + 5 * 10^0, and since 10 * 10^0 = 10^1 we conclude that our original expression 15 * 10^0 is equal to 1 * 10^1 + 5 * 10^0.

This is the reason you 'carry the 1'.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I do not understand where you are getting 915 instead of 815? What am I missing?

------------------------------------------------

Self-critique Rating: OK

@&

I believe that's a typo on my part.

Your solution is fine.

*@

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!

&#Good responses. See my notes and let me know if you have questions. &#