#$&* course MTH 151 4/18/13 12:20 019. `query 19
.............................................
Given Solution: 2 means 2 * 10^0 1 means 1 * 10^1 8 means 8 * 10^2 3 means 3 * 10^3 5 means 5 * 10^4 Thus the number 53812 means (5*10^4)+(3*10^3)+(8*10^2)+(1*10^1)+(2*10^0). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: OK ********************************************* Question: `q query 4.2.20 536 + 279 in expanded notation Write 536 + 279 in expanded notation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (5 * 10^2) + (3 * 10^1) + (6 * 10^0) + (2*10^2) + (7 * 10^1) + (9 * 10^0) (7 * 10 ^2) + (10 * 10^1) + (15 * 10^0) = (8 * 10^2) + (1 * 10^1) + (5 * 10^0) = 815 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** We write this sum as 5 * 10^2 + 3 * 10^1 + 6 * 10^0 + 2 * 10^2 + 7 * 10^1 + 9 * 10^0 ______________________________ 8 * 10^2 + 10* 10^1 + 15* 10^0. Since 10 * 10^1 = 10^2 we can write this as 9 * 10^2 + 0 * 10^1 + 15 * 10^0. Since 15 * 10^0 = 10 * 10^0 + 5 * 10^0 = 10^1 + 5 * 10^0 we rewrite this as 9 * 10^2 + 1 * 10^1 + 5 * 10^0. This result is expressed in our place-value system as 915. ** STUDENT QUESTION: When adding the 6*10^0 and the 9*10^0 I don’t carry the one like in regular math? INSTRUCTOR RESPONSE: We're not applying the rules for addition as we all learned them in elementary school, but reasoning our results out from the more basic perspective of a place-value system. 6 * 10^0 + 9 * 10^0 = 15 * 10^0. 15 * 10^0 means 10 * 10^0 + 5 * 10^0, and since 10 * 10^0 = 10^1 we conclude that our original expression 15 * 10^0 is equal to 1 * 10^1 + 5 * 10^0. This is the reason you 'carry the 1'. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I do not understand where you are getting 915 instead of 815? What am I missing? ------------------------------------------------ Self-critique Rating: OK